Cargando…

Ectopic expression of Klotho in fibroblast growth factor 23 (FGF23)-producing tumors that cause tumor-induced rickets/osteomalacia (TIO)

Tumor-induced rickets/osteomalacia (TIO) is a rare paraneoplastic syndrome caused by tumors that ectopically express fibroblast growth factor 23 (FGF23). FGF23 is a bone-derived hormone that regulates serum phosphate concentrations. Patients with TIO develop hypophosphatemic rickets/osteomalacia due...

Descripción completa

Detalles Bibliográficos
Autores principales: Kinoshita, Yuka, Takashi, Yuichi, Ito, Nobuaki, Ikegawa, Shiro, Mano, Hiroyuki, Ushiku, Tetsuo, Fukayama, Masashi, Nangaku, Masaomi, Fukumoto, Seiji
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6321977/
https://www.ncbi.nlm.nih.gov/pubmed/30627598
http://dx.doi.org/10.1016/j.bonr.2018.100192
Descripción
Sumario:Tumor-induced rickets/osteomalacia (TIO) is a rare paraneoplastic syndrome caused by tumors that ectopically express fibroblast growth factor 23 (FGF23). FGF23 is a bone-derived hormone that regulates serum phosphate concentrations. Patients with TIO develop hypophosphatemic rickets/osteomalacia due to FGF23 excess and suffer from symptoms such as leg deformities, bone pain, skeletal muscle myopathy, and multiple fractures/pseudofractures. Usually, successful surgical removal of the causative tumors normalizes serum FGF23 and phosphate concentrations in patients with TIO. Most FGF23-producing tumors associated with TIO are histologically called phosphaturic mesenchymal tumor, mixed connective tissue variant (PMTMCT). The precise mechanism by which these tumors ectopically overproduce FGF23 outside of bone is yet to be clarified. Therefore, we performed an RNA sequencing analysis of a PMTMCT that was found in the left parotid gland of a patient with TIO. Among the upregulated genes, we focused on Klotho, the protein product of which is a single pass transmembrane protein that works along with an FGF receptor 1c as a receptor complex for FGF23. Subsequent histological analysis confirmed the ectopic expression of Klotho in other PMTMCTs. From these results, we assume that the ectopic expression of Klotho in PTMMCTs enables a positive feedback loop in FGF23 production via the activation of FGF receptor 1c and exacerbates disease manifestations in TIO.