Cargando…
Long-term effects of straw and straw-derived biochar on soil aggregation and fungal community in a rice–wheat rotation system
BACKGROUND: Soil aggregation is fundamental for soil functioning and agricultural productivity. Aggregate formation depends on microbial activity influencing the production of exudates and hyphae, which in turn act as binding materials. Fungi are also important for improving soil quality and promoti...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6322488/ https://www.ncbi.nlm.nih.gov/pubmed/30631646 http://dx.doi.org/10.7717/peerj.6171 |
_version_ | 1783385615961686016 |
---|---|
author | Bai, Naling Zhang, Hanlin Li, Shuangxi Zheng, Xianqing Zhang, Juanqin Zhang, Haiyun Zhou, Sheng Sun, Huifeng Lv, Weiguang |
author_facet | Bai, Naling Zhang, Hanlin Li, Shuangxi Zheng, Xianqing Zhang, Juanqin Zhang, Haiyun Zhou, Sheng Sun, Huifeng Lv, Weiguang |
author_sort | Bai, Naling |
collection | PubMed |
description | BACKGROUND: Soil aggregation is fundamental for soil functioning and agricultural productivity. Aggregate formation depends on microbial activity influencing the production of exudates and hyphae, which in turn act as binding materials. Fungi are also important for improving soil quality and promoting plant growth in a symbiotic manner. There is a scarcity of findings comparing the long-term impacts of different yearly double-crop straw return modes (e.g., straw return to the field and straw-derived biochar return to the field) on soil aggregation and fungal community structure in rice–wheat rotation systems. METHODS: The effects of 6-year continuous straw and straw-derived biochar amendment on soil physicochemical properties and the fungal community were evaluated in an intensively managed crop rotation system (rice–wheat). Soil samples of different aggregates (macroaggregates, microaggregates, and silt clay) from four different fertilization regimes (control, CK; traditional inorganic fertilization, CF; straw returned to field, CS; straw-derived biochar addition, CB) were obtained, and Illumina MiSeq sequencing analysis of the fungal internal transcribed spacer gene was performed. RESULTS: Compared to CF, CS and CB enhanced soil organic carbon, total nitrogen, and aggregation in 0–20 and 20–40 cm soil, with CB exhibiting a stronger effect. Additionally, agrowaste addition increased the mean weight diameter and the geometric diameter and decreased the fractal dimension (p < 0.05). Principal coordinates analysis indicated that fertilization management affected fungal community structure and aggregation distribution. In addition, CS increased fungal community richness and diversity, compared to CK, CB decreased these aspects. Ascomycota, unclassified_k_Fungi, and Basidiomycota were the dominant phyla in all soil samples. At the genus level, CB clearly increased fungi decomposing biosolids (Articulospora in macroaggregates in 0–20 cm soil and Neurospora in macroaggregates in 20–40 cm soil); decreased pathogenic fungi (Monographella in macroaggregates and Gibberella in microaggregates in 0–20 cm soil) and CO(2)-emission-related fungi (Pyrenochaetopsis in microaggregates and silt clay in 0–40 cm soil) (p < 0.05). Straw and biochar with inorganic fertilizer counteracted some of the adverse effects of the inorganic fertilizer with biochar showing better effects than straw. |
format | Online Article Text |
id | pubmed-6322488 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | PeerJ Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-63224882019-01-10 Long-term effects of straw and straw-derived biochar on soil aggregation and fungal community in a rice–wheat rotation system Bai, Naling Zhang, Hanlin Li, Shuangxi Zheng, Xianqing Zhang, Juanqin Zhang, Haiyun Zhou, Sheng Sun, Huifeng Lv, Weiguang PeerJ Ecology BACKGROUND: Soil aggregation is fundamental for soil functioning and agricultural productivity. Aggregate formation depends on microbial activity influencing the production of exudates and hyphae, which in turn act as binding materials. Fungi are also important for improving soil quality and promoting plant growth in a symbiotic manner. There is a scarcity of findings comparing the long-term impacts of different yearly double-crop straw return modes (e.g., straw return to the field and straw-derived biochar return to the field) on soil aggregation and fungal community structure in rice–wheat rotation systems. METHODS: The effects of 6-year continuous straw and straw-derived biochar amendment on soil physicochemical properties and the fungal community were evaluated in an intensively managed crop rotation system (rice–wheat). Soil samples of different aggregates (macroaggregates, microaggregates, and silt clay) from four different fertilization regimes (control, CK; traditional inorganic fertilization, CF; straw returned to field, CS; straw-derived biochar addition, CB) were obtained, and Illumina MiSeq sequencing analysis of the fungal internal transcribed spacer gene was performed. RESULTS: Compared to CF, CS and CB enhanced soil organic carbon, total nitrogen, and aggregation in 0–20 and 20–40 cm soil, with CB exhibiting a stronger effect. Additionally, agrowaste addition increased the mean weight diameter and the geometric diameter and decreased the fractal dimension (p < 0.05). Principal coordinates analysis indicated that fertilization management affected fungal community structure and aggregation distribution. In addition, CS increased fungal community richness and diversity, compared to CK, CB decreased these aspects. Ascomycota, unclassified_k_Fungi, and Basidiomycota were the dominant phyla in all soil samples. At the genus level, CB clearly increased fungi decomposing biosolids (Articulospora in macroaggregates in 0–20 cm soil and Neurospora in macroaggregates in 20–40 cm soil); decreased pathogenic fungi (Monographella in macroaggregates and Gibberella in microaggregates in 0–20 cm soil) and CO(2)-emission-related fungi (Pyrenochaetopsis in microaggregates and silt clay in 0–40 cm soil) (p < 0.05). Straw and biochar with inorganic fertilizer counteracted some of the adverse effects of the inorganic fertilizer with biochar showing better effects than straw. PeerJ Inc. 2019-01-04 /pmc/articles/PMC6322488/ /pubmed/30631646 http://dx.doi.org/10.7717/peerj.6171 Text en © 2019 Bai et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. |
spellingShingle | Ecology Bai, Naling Zhang, Hanlin Li, Shuangxi Zheng, Xianqing Zhang, Juanqin Zhang, Haiyun Zhou, Sheng Sun, Huifeng Lv, Weiguang Long-term effects of straw and straw-derived biochar on soil aggregation and fungal community in a rice–wheat rotation system |
title | Long-term effects of straw and straw-derived biochar on soil aggregation and fungal community in a rice–wheat rotation system |
title_full | Long-term effects of straw and straw-derived biochar on soil aggregation and fungal community in a rice–wheat rotation system |
title_fullStr | Long-term effects of straw and straw-derived biochar on soil aggregation and fungal community in a rice–wheat rotation system |
title_full_unstemmed | Long-term effects of straw and straw-derived biochar on soil aggregation and fungal community in a rice–wheat rotation system |
title_short | Long-term effects of straw and straw-derived biochar on soil aggregation and fungal community in a rice–wheat rotation system |
title_sort | long-term effects of straw and straw-derived biochar on soil aggregation and fungal community in a rice–wheat rotation system |
topic | Ecology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6322488/ https://www.ncbi.nlm.nih.gov/pubmed/30631646 http://dx.doi.org/10.7717/peerj.6171 |
work_keys_str_mv | AT bainaling longtermeffectsofstrawandstrawderivedbiocharonsoilaggregationandfungalcommunityinaricewheatrotationsystem AT zhanghanlin longtermeffectsofstrawandstrawderivedbiocharonsoilaggregationandfungalcommunityinaricewheatrotationsystem AT lishuangxi longtermeffectsofstrawandstrawderivedbiocharonsoilaggregationandfungalcommunityinaricewheatrotationsystem AT zhengxianqing longtermeffectsofstrawandstrawderivedbiocharonsoilaggregationandfungalcommunityinaricewheatrotationsystem AT zhangjuanqin longtermeffectsofstrawandstrawderivedbiocharonsoilaggregationandfungalcommunityinaricewheatrotationsystem AT zhanghaiyun longtermeffectsofstrawandstrawderivedbiocharonsoilaggregationandfungalcommunityinaricewheatrotationsystem AT zhousheng longtermeffectsofstrawandstrawderivedbiocharonsoilaggregationandfungalcommunityinaricewheatrotationsystem AT sunhuifeng longtermeffectsofstrawandstrawderivedbiocharonsoilaggregationandfungalcommunityinaricewheatrotationsystem AT lvweiguang longtermeffectsofstrawandstrawderivedbiocharonsoilaggregationandfungalcommunityinaricewheatrotationsystem |