Cargando…
Imputation accuracy of wheat genotyping-by-sequencing (GBS) data using barley and wheat genome references
Genotyping-by-sequencing (GBS) provides high SNP coverage and has recently emerged as a popular technology for genetic and breeding applications in bread wheat (Triticum aestivum L.) and many other plant species. Although GBS can discover millions of SNPs, a high rate of missing data is a major conc...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6322752/ https://www.ncbi.nlm.nih.gov/pubmed/30615624 http://dx.doi.org/10.1371/journal.pone.0208614 |
Sumario: | Genotyping-by-sequencing (GBS) provides high SNP coverage and has recently emerged as a popular technology for genetic and breeding applications in bread wheat (Triticum aestivum L.) and many other plant species. Although GBS can discover millions of SNPs, a high rate of missing data is a major concern for many applications. Accurate imputation of those missing data can significantly improve the utility of GBS data. This study compared imputation accuracies among four genome references including three wheat references (Chinese Spring survey sequence, W7984, and IWGSC RefSeq v1.0) and one barley reference genome by comparing imputed data derived from low-depth sequencing to actual data from high-depth sequencing. After imputation, the average number of imputed data points was the highest in the B genome (~48.99%). The D genome had the lowest imputed data points (~15.02%) but the highest imputation accuracy. Among the four reference genomes, IWGSC RefSeq v1.0 reference provided the most imputed data points, but the lowest imputation accuracy for the SNPs with < 10% minor allele frequency (MAF). The W7984 reference, however, provided the highest imputation accuracy for the SNPs with < 10% MAF. |
---|