Cargando…

Salvianolic acid B, an antioxidant derived from Salvia militarize, protects mice against γ-radiation-induced damage through Nrf2/Bach1

Salvianolic acid B (SB) is an antioxidant derived from Salvia militarize, and is one of the most widely used herbs in traditional Chinese medicine. SB is a potent antioxidant that has been well documented as a scavenger of oxygen free radicals, and has been used for the prevention and treatment of a...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Ruifang, Long, Haishan, Zhang, Bei, Lao, Zhizhao, Zheng, Quanyu, Wang, Tiancheng, Zhang, Yongxin, Wu, Qingguang, Lai, Xiaoping, Li, Geng, Lin, Lizhu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6323199/
https://www.ncbi.nlm.nih.gov/pubmed/30535483
http://dx.doi.org/10.3892/mmr.2018.9718
Descripción
Sumario:Salvianolic acid B (SB) is an antioxidant derived from Salvia militarize, and is one of the most widely used herbs in traditional Chinese medicine. SB is a potent antioxidant that has been well documented as a scavenger of oxygen free radicals, and has been used for the prevention and treatment of atherosclerosis-associated disorders. To explore its potential therapeutic effects in treating radiation damage, in this study, mice were treated with SB at different doses of 5, 12.5 and 20 mg/kg, subsequent to receiving γ-irradiation. The effects of SB on peripheral blood, bone marrow nucleated cells, spleen and thymus indices, and oxidation resistance were evaluated in both radiated mice and control groups. The results indicated that SB significantly increased the counts of peripheral white blood cells, red blood cells and platelets. The number of nucleated cells in the bone marrow and the level of protein increased as well. In addition, improved spleen and thymus indices in the bone marrow were observed. SB treatment additionally reversed the deterioration of both the thymus and spleen indices, which is associated with increased serum superoxide dismutase activity and decreasing malondialdehyde levels via nuclear factor (erythroid-derived 2)-like 2 protein/BTB and CNC homology 1 mediated antioxidant effect. Furthermore, ROS levels and Bax protein expression were also suppressed by SB. The data suggested that SB is effective in protecting mice from γ-radiation injury, and could potentially be applicable for clinical use. Notably, the present study identified a promising candidate drug for enhancing the hematopoietic and immune systems.