Cargando…
Sphingomyelin synthase 1 regulates the epithelial-to-mesenchymal transition mediated by the TGF-β/Smad pathway in MDA-MB-231 cells
Breast cancer is the most common cancer in women and a leading cause of cancer-associated mortalities in the world. Epithelial-to-mesenchymal transition (EMT) serves an important role in the process of metastasis and invasive ability in cancer cells, and transforming growth factor β1 (TGF-β1) have b...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6323219/ https://www.ncbi.nlm.nih.gov/pubmed/30535436 http://dx.doi.org/10.3892/mmr.2018.9722 |
_version_ | 1783385719103815680 |
---|---|
author | Liu, Shuang Hou, Huan Zhang, Panpan Wu, Yifan He, Xuanhong Li, Hua Yan, Nianlong |
author_facet | Liu, Shuang Hou, Huan Zhang, Panpan Wu, Yifan He, Xuanhong Li, Hua Yan, Nianlong |
author_sort | Liu, Shuang |
collection | PubMed |
description | Breast cancer is the most common cancer in women and a leading cause of cancer-associated mortalities in the world. Epithelial-to-mesenchymal transition (EMT) serves an important role in the process of metastasis and invasive ability in cancer cells, and transforming growth factor β1 (TGF-β1) have been investigated for promoting EMT. However, in the present study, the role of the sphingomyelin synthase 1 (SMS1) in TGF-β1-induced EMT development was investigated. Firstly, bioinformatics analysis demonstrated that the overexpression of SMS1 negatively regulated the TGFβ receptor I (TβRI) level of expression. Subsequently, the expression of SMS1 was decreased, whereas, SMS2 had no significant difference when MDA-MB-231 cells were treated by TGF-β1 for 72 h. Furthermore, the present study constructed an overexpression cells model of SMS1 and these cells were treated by TGF-β1. These results demonstrated that overexpression of SMS1 inhibited TGF-β1-induced EMT and the migration and invasion of MDA-MB-231 cells, increasing the expression of E-cadherin while decreasing the expression of vimentin. Furthermore, the present study further confirmed that SMS1 overexpression could decrease TβRI expression levels and blocked smad family member 2 phosphorylation. Overall, the present results suggested that SMS1 could inhibit EMT and the migration and invasion of MDA-MB-231 cells via TGF-β/Smad signaling pathway. |
format | Online Article Text |
id | pubmed-6323219 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | D.A. Spandidos |
record_format | MEDLINE/PubMed |
spelling | pubmed-63232192019-01-15 Sphingomyelin synthase 1 regulates the epithelial-to-mesenchymal transition mediated by the TGF-β/Smad pathway in MDA-MB-231 cells Liu, Shuang Hou, Huan Zhang, Panpan Wu, Yifan He, Xuanhong Li, Hua Yan, Nianlong Mol Med Rep Articles Breast cancer is the most common cancer in women and a leading cause of cancer-associated mortalities in the world. Epithelial-to-mesenchymal transition (EMT) serves an important role in the process of metastasis and invasive ability in cancer cells, and transforming growth factor β1 (TGF-β1) have been investigated for promoting EMT. However, in the present study, the role of the sphingomyelin synthase 1 (SMS1) in TGF-β1-induced EMT development was investigated. Firstly, bioinformatics analysis demonstrated that the overexpression of SMS1 negatively regulated the TGFβ receptor I (TβRI) level of expression. Subsequently, the expression of SMS1 was decreased, whereas, SMS2 had no significant difference when MDA-MB-231 cells were treated by TGF-β1 for 72 h. Furthermore, the present study constructed an overexpression cells model of SMS1 and these cells were treated by TGF-β1. These results demonstrated that overexpression of SMS1 inhibited TGF-β1-induced EMT and the migration and invasion of MDA-MB-231 cells, increasing the expression of E-cadherin while decreasing the expression of vimentin. Furthermore, the present study further confirmed that SMS1 overexpression could decrease TβRI expression levels and blocked smad family member 2 phosphorylation. Overall, the present results suggested that SMS1 could inhibit EMT and the migration and invasion of MDA-MB-231 cells via TGF-β/Smad signaling pathway. D.A. Spandidos 2019-02 2018-12-04 /pmc/articles/PMC6323219/ /pubmed/30535436 http://dx.doi.org/10.3892/mmr.2018.9722 Text en Copyright: © Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. |
spellingShingle | Articles Liu, Shuang Hou, Huan Zhang, Panpan Wu, Yifan He, Xuanhong Li, Hua Yan, Nianlong Sphingomyelin synthase 1 regulates the epithelial-to-mesenchymal transition mediated by the TGF-β/Smad pathway in MDA-MB-231 cells |
title | Sphingomyelin synthase 1 regulates the epithelial-to-mesenchymal transition mediated by the TGF-β/Smad pathway in MDA-MB-231 cells |
title_full | Sphingomyelin synthase 1 regulates the epithelial-to-mesenchymal transition mediated by the TGF-β/Smad pathway in MDA-MB-231 cells |
title_fullStr | Sphingomyelin synthase 1 regulates the epithelial-to-mesenchymal transition mediated by the TGF-β/Smad pathway in MDA-MB-231 cells |
title_full_unstemmed | Sphingomyelin synthase 1 regulates the epithelial-to-mesenchymal transition mediated by the TGF-β/Smad pathway in MDA-MB-231 cells |
title_short | Sphingomyelin synthase 1 regulates the epithelial-to-mesenchymal transition mediated by the TGF-β/Smad pathway in MDA-MB-231 cells |
title_sort | sphingomyelin synthase 1 regulates the epithelial-to-mesenchymal transition mediated by the tgf-β/smad pathway in mda-mb-231 cells |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6323219/ https://www.ncbi.nlm.nih.gov/pubmed/30535436 http://dx.doi.org/10.3892/mmr.2018.9722 |
work_keys_str_mv | AT liushuang sphingomyelinsynthase1regulatestheepithelialtomesenchymaltransitionmediatedbythetgfbsmadpathwayinmdamb231cells AT houhuan sphingomyelinsynthase1regulatestheepithelialtomesenchymaltransitionmediatedbythetgfbsmadpathwayinmdamb231cells AT zhangpanpan sphingomyelinsynthase1regulatestheepithelialtomesenchymaltransitionmediatedbythetgfbsmadpathwayinmdamb231cells AT wuyifan sphingomyelinsynthase1regulatestheepithelialtomesenchymaltransitionmediatedbythetgfbsmadpathwayinmdamb231cells AT hexuanhong sphingomyelinsynthase1regulatestheepithelialtomesenchymaltransitionmediatedbythetgfbsmadpathwayinmdamb231cells AT lihua sphingomyelinsynthase1regulatestheepithelialtomesenchymaltransitionmediatedbythetgfbsmadpathwayinmdamb231cells AT yannianlong sphingomyelinsynthase1regulatestheepithelialtomesenchymaltransitionmediatedbythetgfbsmadpathwayinmdamb231cells |