Cargando…
Effects of aging on mitochondrial hydrogen peroxide emission and calcium retention capacity in rat heart
Aging is a risk factor for heart disease and heart failure, which result from a progressive impairment of cardiac functions, including stroke volume, cardiac output, blood flow, and oxygen consumption. Age-related cardiac dysfunction is associated with impaired cardiac structures, such as the loss o...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Society of Exercise Rehabilitation
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6323348/ https://www.ncbi.nlm.nih.gov/pubmed/30656149 http://dx.doi.org/10.12965/jer.1836550.275 |
_version_ | 1783385746952945664 |
---|---|
author | No, Mi-Hyun Heo, Jun-Won Yoo, Su-Zi Jo, Han-Sam Park, Dong-Ho Kang, Ju-Hee Seo, Dae-Yun Han, Jin Kwak, Hyo-Bum |
author_facet | No, Mi-Hyun Heo, Jun-Won Yoo, Su-Zi Jo, Han-Sam Park, Dong-Ho Kang, Ju-Hee Seo, Dae-Yun Han, Jin Kwak, Hyo-Bum |
author_sort | No, Mi-Hyun |
collection | PubMed |
description | Aging is a risk factor for heart disease and heart failure, which result from a progressive impairment of cardiac functions, including stroke volume, cardiac output, blood flow, and oxygen consumption. Age-related cardiac dysfunction is associated with impaired cardiac structures, such as the loss of myocytes, structural remodeling, altered calcium (Ca(2+)) handling, and contractile dysfunction. However, the mechanism by which aging affects mitochondrial function in the heart is poorly understood. The purpose of this study was to determine the effects of aging on mitochondrial function in the rat heart. Male Fischer 344 rats were randomly assigned to very young sedentary (VYS, 1 month), young sedentary (YS, 4 months), middle-aged sedentary (MS, 10 months), and old sedentary (OS, 20 months) groups. mitochondrial complex protein levels and mitochondrial function (e.g., mitochondrial hydrogen peroxide (H(2)O(2)) emission and Ca(2+) retention capacity) were analyzed in the left ventricle. Aging was associated with decreased levels of OXPHOS (oxidative phosphorylation) protein expression of complex I to IV in the function of the electron transport chain. Aging increased the mitochondrial H(2)O(2) emitting potential in the heart. In contrast, mitochondrial Ca(2+) retention capacity gradually decreased with age. These data demonstrate that aging impairs mitochondrial function in cardiac muscle, suggesting that mitochondrial dysfunction with aging may be a primary factor for aging-induced cardiac dysfunction in the heart. |
format | Online Article Text |
id | pubmed-6323348 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Korean Society of Exercise Rehabilitation |
record_format | MEDLINE/PubMed |
spelling | pubmed-63233482019-01-17 Effects of aging on mitochondrial hydrogen peroxide emission and calcium retention capacity in rat heart No, Mi-Hyun Heo, Jun-Won Yoo, Su-Zi Jo, Han-Sam Park, Dong-Ho Kang, Ju-Hee Seo, Dae-Yun Han, Jin Kwak, Hyo-Bum J Exerc Rehabil Original Article Aging is a risk factor for heart disease and heart failure, which result from a progressive impairment of cardiac functions, including stroke volume, cardiac output, blood flow, and oxygen consumption. Age-related cardiac dysfunction is associated with impaired cardiac structures, such as the loss of myocytes, structural remodeling, altered calcium (Ca(2+)) handling, and contractile dysfunction. However, the mechanism by which aging affects mitochondrial function in the heart is poorly understood. The purpose of this study was to determine the effects of aging on mitochondrial function in the rat heart. Male Fischer 344 rats were randomly assigned to very young sedentary (VYS, 1 month), young sedentary (YS, 4 months), middle-aged sedentary (MS, 10 months), and old sedentary (OS, 20 months) groups. mitochondrial complex protein levels and mitochondrial function (e.g., mitochondrial hydrogen peroxide (H(2)O(2)) emission and Ca(2+) retention capacity) were analyzed in the left ventricle. Aging was associated with decreased levels of OXPHOS (oxidative phosphorylation) protein expression of complex I to IV in the function of the electron transport chain. Aging increased the mitochondrial H(2)O(2) emitting potential in the heart. In contrast, mitochondrial Ca(2+) retention capacity gradually decreased with age. These data demonstrate that aging impairs mitochondrial function in cardiac muscle, suggesting that mitochondrial dysfunction with aging may be a primary factor for aging-induced cardiac dysfunction in the heart. Korean Society of Exercise Rehabilitation 2018-12-27 /pmc/articles/PMC6323348/ /pubmed/30656149 http://dx.doi.org/10.12965/jer.1836550.275 Text en Copyright © 2018 Korean Society of Exercise Rehabilitation This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article No, Mi-Hyun Heo, Jun-Won Yoo, Su-Zi Jo, Han-Sam Park, Dong-Ho Kang, Ju-Hee Seo, Dae-Yun Han, Jin Kwak, Hyo-Bum Effects of aging on mitochondrial hydrogen peroxide emission and calcium retention capacity in rat heart |
title | Effects of aging on mitochondrial hydrogen peroxide emission and calcium retention capacity in rat heart |
title_full | Effects of aging on mitochondrial hydrogen peroxide emission and calcium retention capacity in rat heart |
title_fullStr | Effects of aging on mitochondrial hydrogen peroxide emission and calcium retention capacity in rat heart |
title_full_unstemmed | Effects of aging on mitochondrial hydrogen peroxide emission and calcium retention capacity in rat heart |
title_short | Effects of aging on mitochondrial hydrogen peroxide emission and calcium retention capacity in rat heart |
title_sort | effects of aging on mitochondrial hydrogen peroxide emission and calcium retention capacity in rat heart |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6323348/ https://www.ncbi.nlm.nih.gov/pubmed/30656149 http://dx.doi.org/10.12965/jer.1836550.275 |
work_keys_str_mv | AT nomihyun effectsofagingonmitochondrialhydrogenperoxideemissionandcalciumretentioncapacityinratheart AT heojunwon effectsofagingonmitochondrialhydrogenperoxideemissionandcalciumretentioncapacityinratheart AT yoosuzi effectsofagingonmitochondrialhydrogenperoxideemissionandcalciumretentioncapacityinratheart AT johansam effectsofagingonmitochondrialhydrogenperoxideemissionandcalciumretentioncapacityinratheart AT parkdongho effectsofagingonmitochondrialhydrogenperoxideemissionandcalciumretentioncapacityinratheart AT kangjuhee effectsofagingonmitochondrialhydrogenperoxideemissionandcalciumretentioncapacityinratheart AT seodaeyun effectsofagingonmitochondrialhydrogenperoxideemissionandcalciumretentioncapacityinratheart AT hanjin effectsofagingonmitochondrialhydrogenperoxideemissionandcalciumretentioncapacityinratheart AT kwakhyobum effectsofagingonmitochondrialhydrogenperoxideemissionandcalciumretentioncapacityinratheart |