Cargando…
Medical Image Segmentation Using Fruit Fly Optimization and Density Peaks Clustering
In this paper, we propose a novel algorithm for medical image segmentation, which combines the density peaks clustering (DPC) with the fruit fly optimization algorithm, and it has the following advantages. Firstly, it avoids the problem of DPC that needs to artificially select parameters (such as th...
Autores principales: | Zhu, Hong, He, Hanzhi, Xu, Jinhui, Fang, Qianhao, Wang, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6323531/ https://www.ncbi.nlm.nih.gov/pubmed/30675176 http://dx.doi.org/10.1155/2018/3052852 |
Ejemplares similares
-
Microfeature Segmentation Algorithm for Biological Images Using Improved Density Peak Clustering
por: Li, Man, et al.
Publicado: (2022) -
Superpixel Segmentation Based on Grid Point Density Peak Clustering
por: Chen, Xianyi, et al.
Publicado: (2021) -
Automatic Prediction of Meningioma Grade Image Based on Data Amplification and Improved Convolutional Neural Network
por: Zhu, Hong, et al.
Publicado: (2019) -
Multi-threshold image segmentation using an enhanced fruit fly optimization for COVID-19 X-ray images
por: Hao, Shuhui, et al.
Publicado: (2023) -
Quantum Density Peak Clustering Algorithm
por: Wu, Zhihao, et al.
Publicado: (2022)