Cargando…
Selection of Neural Oscillatory Features for Human Stress Classification with Single Channel EEG Headset
A study on classification of psychological stress in humans using electroencephalography (EEG) is presented. The stress is classified using a correlation-based feature subset selection method that efficiently reduces the feature vector length. In this study, twenty-eight participants are involved by...
Autores principales: | Umar Saeed, Sanay Muhammad, Anwar, Syed Muhammad, Majid, Muhammad, Awais, Muhammad, Alnowami, Majdi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6323535/ https://www.ncbi.nlm.nih.gov/pubmed/30671443 http://dx.doi.org/10.1155/2018/1049257 |
Ejemplares similares
-
Arrhythmia Classification of ECG Signals Using Hybrid Features
por: Anwar, Syed Muhammad, et al.
Publicado: (2018) -
EEG Based Classification of Long-Term Stress Using Psychological Labeling
por: Saeed, Sanay Muhammad Umar, et al.
Publicado: (2020) -
EEG in game user analysis: A framework for expertise classification during gameplay
por: Hafeez, Tehmina, et al.
Publicado: (2021) -
Physiological Sensors Based Emotion Recognition While Experiencing Tactile Enhanced Multimedia
por: Raheel, Aasim, et al.
Publicado: (2020) -
A Single-Channel Wireless EEG Headset Enabled Neural Activities Analysis for Mental Healthcare Applications
por: Ali, Ahmed, et al.
Publicado: (2022)