Cargando…

Molecular investigation of the colicinogenic Escherichia coli strains that are capable of inhibiting E. coli O157:H7 in vitro

BACKGROUND: Escherichia coli O157:H7 is a highly virulent human pathogen with severe consequences following infection, which claims many lives worldwide. A suggested method for controlling this bacterium is the competitive elimination through using probiotic bacteria that prevent its colonization. S...

Descripción completa

Detalles Bibliográficos
Autores principales: Askari, Nasrin, Ghanbarpour, Reza
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6323730/
https://www.ncbi.nlm.nih.gov/pubmed/30616623
http://dx.doi.org/10.1186/s12917-018-1771-y
Descripción
Sumario:BACKGROUND: Escherichia coli O157:H7 is a highly virulent human pathogen with severe consequences following infection, which claims many lives worldwide. A suggested method for controlling this bacterium is the competitive elimination through using probiotic bacteria that prevent its colonization. Some nonpathogenic E. coli strains that produce antibacterial colicins are among these probiotic bacteria. We aimed to isolate and characterize the colicinogenic E. coli strains from diarrheic and healthy sheep that inhibit E. coli O157:H7, which could be used as possible probiotic sources. A total of 292 E. coli isolates (146 from each diarrheic and healthy sheep) were screened for the presence of colicin and virulence genes. The phylogenetic group/subgroup determination was performed by PCR. In vitro evaluation of inhibitory effect of colicinogenic isolates on E. coli O157:H7 was done phenotypically. RESULTS: The frequency of diarrhea associated colicinogenic E. coli isolates was significantly higher than those isolated from healthy sheep. An association between ETEC and the genes coding for colicin-V & colicin-Iab in diarrheic E. coli isolates was observed. Moreover, there was an association between ipaH and Colicin-V encoding genes. Furthermore, E. coli isolates showing bacteriocinogeny while possessing no virulence genes had a frequency of 97.67 and 11.94% in healthy and diarrheic isolates, respectively. Of these strains, five isolates (3.42%) from diarrheic and twenty-five isolates (17.12%) from healthy sheep inhibited O157:H7 strain. Additionally, colicin E1 and colicin Iab genes were more prevalent in B1 phylogroup. CONCLUSIONS: These results signified that healthy sheep could be considered as a potential source for anti-O175:H7 bacterial isolates.