Cargando…

Transcriptomic de novo analysis of pitaya (Hylocereus polyrhizus) canker disease caused by Neoscytalidium dimidiatum

BACKGROUND: Canker disease caused by Neoscytalidium dimidiatum is the most serious disease that attacks the pitaya industry. One pathogenic fungus, referred to as ND8, was isolated from the wild-type red-fleshed pitaya (Hylocereus polyrhizus) of Hainan Province. In the early stages of this disease,...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Min, Liu, Cheng-Li, Luo, Juan, Qi, Zhao, Yan, Zhen, Fu, Yu, Wei, Shuang-Shuang, Tang, Hua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6323817/
https://www.ncbi.nlm.nih.gov/pubmed/30616517
http://dx.doi.org/10.1186/s12864-018-5343-0
Descripción
Sumario:BACKGROUND: Canker disease caused by Neoscytalidium dimidiatum is the most serious disease that attacks the pitaya industry. One pathogenic fungus, referred to as ND8, was isolated from the wild-type red-fleshed pitaya (Hylocereus polyrhizus) of Hainan Province. In the early stages of this disease, stems show little spots and a loss of green color. These spots then gradually spread until the stems became rotten due to infection by various strains. Canker disease caused by Neoscytalidium dimidiatum poses a significant threat to pitaya commercial plantations with the growth of stems and the yields, quality of pitaya fruits. However, a lack of transcriptomic and genomic information hinders our understanding of the molecular mechanisms underlying the pitaya defense response. RESULTS: We investigated the host responses of red-fleshed pitaya (H. polyrhizus) cultivars against N. dimidiatum using Illumina RNA-Seq technology. Significant expression profiles of 23 defense-related genes were further analyzed by qRT-PCR. The total read length based on RNA-Seq was 25,010,007; mean length was 744, the N50 was 1206, and the guanine-cytosine content was 44.48%. Our investigation evaluated 33,584 unigenes, of which 6209 (18.49%) and 27,375 (81.51%) were contigs and singlets, respectively. These unigenes shared a similarity of 16.62% with Vitis vinifera, 7.48% with Theobroma cacao, 6.6% with Nelumbo nucifera and 5.35% with Jatropha curcas. The assembled unigenes were annotated into non-redundant (NR, 25161 unigenes), Kyoto Encyclopedia of Genes and Genomes (KEGG, 17895 unigenes), Clusters of Orthologous Groups (COG, 10475 unigenes), InterPro (19,045 unigenes), and Swiss-Prot public protein databases (16,458 unigenes). In addition, 24 differentially expressed genes, which were mainly associated with plant pathology pathways, were analyzed in-depth. CONCLUSIONS: This study provides a basis for further in-depth research on the protein function of the annotated unigene assembly with cDNA sequences.