Cargando…

funbarRF: DNA barcode-based fungal species prediction using multiclass Random Forest supervised learning model

BACKGROUND: Identification of unknown fungal species aids to the conservation of fungal diversity. As many fungal species cannot be cultured, morphological identification of those species is almost impossible. But, DNA barcoding technique can be employed for identification of such species. For funga...

Descripción completa

Detalles Bibliográficos
Autores principales: Meher, Prabina Kumar, Sahu, Tanmaya Kumar, Gahoi, Shachi, Tomar, Ruchi, Rao, Atmakuri Ramakrishna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6323839/
https://www.ncbi.nlm.nih.gov/pubmed/30616524
http://dx.doi.org/10.1186/s12863-018-0710-z
Descripción
Sumario:BACKGROUND: Identification of unknown fungal species aids to the conservation of fungal diversity. As many fungal species cannot be cultured, morphological identification of those species is almost impossible. But, DNA barcoding technique can be employed for identification of such species. For fungal taxonomy prediction, the ITS (internal transcribed spacer) region of rDNA (ribosomal DNA) is used as barcode. Though the computational prediction of fungal species has become feasible with the availability of huge volume of barcode sequences in public domain, prediction of fungal species is challenging due to high degree of variability among ITS regions within species. RESULTS: A Random Forest (RF)-based predictor was built for identification of unknown fungal species. The reference and query sequences were mapped onto numeric features based on gapped base pair compositions, and then used as training and test sets respectively for prediction of fungal species using RF. More than 85% accuracy was found when 4 sequences per species in the reference set were utilized; whereas it was seen to be stabilized at ~88% if ≥7 sequence per species in the reference set were used for training of the model. The proposed model achieved comparable accuracy, while evaluated against existing methods through cross-validation procedure. The proposed model also outperformed several existing models used for identification of different species other than fungi. CONCLUSIONS: An online prediction server “funbarRF” is established at http://cabgrid.res.in:8080/funbarrf/ for fungal species identification. Besides, an R-package funbarRF (https://cran.r-project.org/web/packages/funbarRF/) is also available for prediction using high throughput sequence data. The effort put in this work will certainly supplement the future endeavors in the direction of fungal taxonomy assignments based on DNA barcode.