Cargando…
funbarRF: DNA barcode-based fungal species prediction using multiclass Random Forest supervised learning model
BACKGROUND: Identification of unknown fungal species aids to the conservation of fungal diversity. As many fungal species cannot be cultured, morphological identification of those species is almost impossible. But, DNA barcoding technique can be employed for identification of such species. For funga...
Autores principales: | Meher, Prabina Kumar, Sahu, Tanmaya Kumar, Gahoi, Shachi, Tomar, Ruchi, Rao, Atmakuri Ramakrishna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6323839/ https://www.ncbi.nlm.nih.gov/pubmed/30616524 http://dx.doi.org/10.1186/s12863-018-0710-z |
Ejemplares similares
-
HRGPred: Prediction of herbicide resistant genes with k-mer nucleotide compositional features and support vector machine
por: Meher, Prabina Kumar, et al.
Publicado: (2019) -
ir-HSP: Improved Recognition of Heat Shock Proteins, Their Families and Sub-types Based On g-Spaced Di-peptide Features and Support Vector Machine
por: Meher, Prabina K., et al.
Publicado: (2018) -
Prediction of donor splice sites using random forest with a new sequence encoding approach
por: Meher, Prabina Kumar, et al.
Publicado: (2016) -
nifPred: Proteome-Wide Identification and Categorization of Nitrogen-Fixation Proteins of Diaztrophs Based on Composition-Transition-Distribution Features Using Support Vector Machine
por: Meher, Prabina K., et al.
Publicado: (2018) -
Predicting antimicrobial peptides with improved accuracy by incorporating the compositional, physico-chemical and structural features into Chou’s general PseAAC
por: Meher, Prabina Kumar, et al.
Publicado: (2017)