Cargando…
EndoDB: a database of endothelial cell transcriptomics data
Endothelial cells (ECs) line blood vessels, regulate homeostatic processes (blood flow, immune cell trafficking), but are also involved in many prevalent diseases. The increasing use of high-throughput technologies such as gene expression microarrays and (single cell) RNA sequencing generated a weal...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6324065/ https://www.ncbi.nlm.nih.gov/pubmed/30357379 http://dx.doi.org/10.1093/nar/gky997 |
_version_ | 1783385903379513344 |
---|---|
author | Khan, Shawez Taverna, Federico Rohlenova, Katerina Treps, Lucas Geldhof, Vincent de Rooij, Laura Sokol, Liliana Pircher, Andreas Conradi, Lena-Christin Kalucka, Joanna Schoonjans, Luc Eelen, Guy Dewerchin, Mieke Karakach, Tobias Li, Xuri Goveia, Jermaine Carmeliet, Peter |
author_facet | Khan, Shawez Taverna, Federico Rohlenova, Katerina Treps, Lucas Geldhof, Vincent de Rooij, Laura Sokol, Liliana Pircher, Andreas Conradi, Lena-Christin Kalucka, Joanna Schoonjans, Luc Eelen, Guy Dewerchin, Mieke Karakach, Tobias Li, Xuri Goveia, Jermaine Carmeliet, Peter |
author_sort | Khan, Shawez |
collection | PubMed |
description | Endothelial cells (ECs) line blood vessels, regulate homeostatic processes (blood flow, immune cell trafficking), but are also involved in many prevalent diseases. The increasing use of high-throughput technologies such as gene expression microarrays and (single cell) RNA sequencing generated a wealth of data on the molecular basis of EC (dys-)function. Extracting biological insight from these datasets is challenging for scientists who are not proficient in bioinformatics. To facilitate the re-use of publicly available EC transcriptomics data, we developed the endothelial database EndoDB, a web-accessible collection of expert curated, quality assured and pre-analyzed data collected from 360 datasets comprising a total of 4741 bulk and 5847 single cell endothelial transcriptomes from six different organisms. Unlike other added-value databases, EndoDB allows to easily retrieve and explore data of specific studies, determine under which conditions genes and pathways of interest are deregulated and assess reprogramming of metabolism via principal component analysis, differential gene expression analysis, gene set enrichment analysis, heatmaps and metabolic and transcription factor analysis, while single cell data are visualized as gene expression color-coded t-SNE plots. Plots and tables in EndoDB are customizable, downloadable and interactive. EndoDB is freely available at https://vibcancer.be/software-tools/endodb, and will be updated to include new studies. |
format | Online Article Text |
id | pubmed-6324065 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-63240652019-01-10 EndoDB: a database of endothelial cell transcriptomics data Khan, Shawez Taverna, Federico Rohlenova, Katerina Treps, Lucas Geldhof, Vincent de Rooij, Laura Sokol, Liliana Pircher, Andreas Conradi, Lena-Christin Kalucka, Joanna Schoonjans, Luc Eelen, Guy Dewerchin, Mieke Karakach, Tobias Li, Xuri Goveia, Jermaine Carmeliet, Peter Nucleic Acids Res Database Issue Endothelial cells (ECs) line blood vessels, regulate homeostatic processes (blood flow, immune cell trafficking), but are also involved in many prevalent diseases. The increasing use of high-throughput technologies such as gene expression microarrays and (single cell) RNA sequencing generated a wealth of data on the molecular basis of EC (dys-)function. Extracting biological insight from these datasets is challenging for scientists who are not proficient in bioinformatics. To facilitate the re-use of publicly available EC transcriptomics data, we developed the endothelial database EndoDB, a web-accessible collection of expert curated, quality assured and pre-analyzed data collected from 360 datasets comprising a total of 4741 bulk and 5847 single cell endothelial transcriptomes from six different organisms. Unlike other added-value databases, EndoDB allows to easily retrieve and explore data of specific studies, determine under which conditions genes and pathways of interest are deregulated and assess reprogramming of metabolism via principal component analysis, differential gene expression analysis, gene set enrichment analysis, heatmaps and metabolic and transcription factor analysis, while single cell data are visualized as gene expression color-coded t-SNE plots. Plots and tables in EndoDB are customizable, downloadable and interactive. EndoDB is freely available at https://vibcancer.be/software-tools/endodb, and will be updated to include new studies. Oxford University Press 2019-01-08 2018-10-24 /pmc/articles/PMC6324065/ /pubmed/30357379 http://dx.doi.org/10.1093/nar/gky997 Text en © The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Database Issue Khan, Shawez Taverna, Federico Rohlenova, Katerina Treps, Lucas Geldhof, Vincent de Rooij, Laura Sokol, Liliana Pircher, Andreas Conradi, Lena-Christin Kalucka, Joanna Schoonjans, Luc Eelen, Guy Dewerchin, Mieke Karakach, Tobias Li, Xuri Goveia, Jermaine Carmeliet, Peter EndoDB: a database of endothelial cell transcriptomics data |
title | EndoDB: a database of endothelial cell transcriptomics data |
title_full | EndoDB: a database of endothelial cell transcriptomics data |
title_fullStr | EndoDB: a database of endothelial cell transcriptomics data |
title_full_unstemmed | EndoDB: a database of endothelial cell transcriptomics data |
title_short | EndoDB: a database of endothelial cell transcriptomics data |
title_sort | endodb: a database of endothelial cell transcriptomics data |
topic | Database Issue |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6324065/ https://www.ncbi.nlm.nih.gov/pubmed/30357379 http://dx.doi.org/10.1093/nar/gky997 |
work_keys_str_mv | AT khanshawez endodbadatabaseofendothelialcelltranscriptomicsdata AT tavernafederico endodbadatabaseofendothelialcelltranscriptomicsdata AT rohlenovakaterina endodbadatabaseofendothelialcelltranscriptomicsdata AT trepslucas endodbadatabaseofendothelialcelltranscriptomicsdata AT geldhofvincent endodbadatabaseofendothelialcelltranscriptomicsdata AT derooijlaura endodbadatabaseofendothelialcelltranscriptomicsdata AT sokolliliana endodbadatabaseofendothelialcelltranscriptomicsdata AT pircherandreas endodbadatabaseofendothelialcelltranscriptomicsdata AT conradilenachristin endodbadatabaseofendothelialcelltranscriptomicsdata AT kaluckajoanna endodbadatabaseofendothelialcelltranscriptomicsdata AT schoonjansluc endodbadatabaseofendothelialcelltranscriptomicsdata AT eelenguy endodbadatabaseofendothelialcelltranscriptomicsdata AT dewerchinmieke endodbadatabaseofendothelialcelltranscriptomicsdata AT karakachtobias endodbadatabaseofendothelialcelltranscriptomicsdata AT lixuri endodbadatabaseofendothelialcelltranscriptomicsdata AT goveiajermaine endodbadatabaseofendothelialcelltranscriptomicsdata AT carmelietpeter endodbadatabaseofendothelialcelltranscriptomicsdata |