Cargando…
Validation of Prediction Models for Critical Care Outcomes Using Natural Language Processing of Electronic Health Record Data
IMPORTANCE: Accurate prediction of outcomes among patients in intensive care units (ICUs) is important for clinical research and monitoring care quality. Most existing prediction models do not take full advantage of the electronic health record, using only the single worst value of laboratory tests...
Autores principales: | Marafino, Ben J., Park, Miran, Davies, Jason M., Thombley, Robert, Luft, Harold S., Sing, David C., Kazi, Dhruv S., DeJong, Colette, Boscardin, W. John, Dean, Mitzi L., Dudley, R. Adams |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Association
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6324323/ https://www.ncbi.nlm.nih.gov/pubmed/30646310 http://dx.doi.org/10.1001/jamanetworkopen.2018.5097 |
Ejemplares similares
-
Changes in Drug List Prices and Amounts Paid by Patients and Insurers
por: Yang, Eric J., et al.
Publicado: (2020) -
Accurate and interpretable intensive care risk adjustment for fused clinical data with generalized additive models
por: Marafino, Ben J., et al.
Publicado: (2018) -
Examination of Stigmatizing Language in the Electronic Health Record
por: Himmelstein, Gracie, et al.
Publicado: (2022) -
Physician Use of Stigmatizing Language in Patient Medical Records
por: Park, Jenny, et al.
Publicado: (2021) -
Classifying Firearm Injury Intent in Electronic Hospital Records Using Natural Language Processing
por: MacPhaul, Erin, et al.
Publicado: (2023)