Cargando…
Assessment of Time-Series Machine Learning Methods for Forecasting Hospital Discharge Volume
IMPORTANCE: Forecasting the volume of hospital discharges has important implications for resource allocation and represents an opportunity to improve patient safety at periods of elevated risk. OBJECTIVE: To determine the performance of a new time-series machine learning method for forecasting hospi...
Autores principales: | McCoy, Thomas H., Pellegrini, Amelia M., Perlis, Roy H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Association
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6324591/ https://www.ncbi.nlm.nih.gov/pubmed/30646340 http://dx.doi.org/10.1001/jamanetworkopen.2018.4087 |
Ejemplares similares
-
Laboratory Findings Associated With Severe Illness and Mortality Among Hospitalized Individuals With Coronavirus Disease 2019 in Eastern Massachusetts
por: Castro, Victor M., et al.
Publicado: (2020) -
Differences among Research Domain Criteria score trajectories by Diagnostic and Statistical Manual categorical diagnosis during inpatient hospitalization
por: McCoy, Thomas H., et al.
Publicado: (2020) -
Using phenome-wide association to investigate the function of a schizophrenia risk locus at SLC39A8
por: McCoy, Thomas H., et al.
Publicado: (2019) -
Sentiment Measured in Hospital Discharge Notes Is Associated with Readmission and Mortality Risk: An Electronic Health Record Study
por: McCoy, Thomas H., et al.
Publicado: (2015) -
Prevalence and Nature of Financial Considerations Documented in Narrative Clinical Records in Intensive Care Units
por: Gordon, Deborah D., et al.
Publicado: (2018)