Cargando…

Walking along chromosomes with super-resolution imaging, contact maps, and integrative modeling

Chromosome organization is crucial for genome function. Here, we present a method for visualizing chromosomal DNA at super-resolution and then integrating Hi-C data to produce three-dimensional models of chromosome organization. Using the super-resolution microscopy methods of OligoSTORM and OligoDN...

Descripción completa

Detalles Bibliográficos
Autores principales: Nir, Guy, Farabella, Irene, Pérez Estrada, Cynthia, Ebeling, Carl G., Beliveau, Brian J., Sasaki, Hiroshi M., Lee, S. Dean, Nguyen, Son C., McCole, Ruth B., Chattoraj, Shyamtanu, Erceg, Jelena, AlHaj Abed, Jumana, Martins, Nuno M. C., Nguyen, Huy Q., Hannan, Mohammed A., Russell, Sheikh, Durand, Neva C., Rao, Suhas S. P., Kishi, Jocelyn Y., Soler-Vila, Paula, Di Pierro, Michele, Onuchic, José N., Callahan, Steven P., Schreiner, John M., Stuckey, Jeff A., Yin, Peng, Aiden, Erez Lieberman, Marti-Renom, Marc A., Wu, C.-ting
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6324821/
https://www.ncbi.nlm.nih.gov/pubmed/30586358
http://dx.doi.org/10.1371/journal.pgen.1007872
Descripción
Sumario:Chromosome organization is crucial for genome function. Here, we present a method for visualizing chromosomal DNA at super-resolution and then integrating Hi-C data to produce three-dimensional models of chromosome organization. Using the super-resolution microscopy methods of OligoSTORM and OligoDNA-PAINT, we trace 8 megabases of human chromosome 19, visualizing structures ranging in size from a few kilobases to over a megabase. Focusing on chromosomal regions that contribute to compartments, we discover distinct structures that, in spite of considerable variability, can predict whether such regions correspond to active (A-type) or inactive (B-type) compartments. Imaging through the depths of entire nuclei, we capture pairs of homologous regions in diploid cells, obtaining evidence that maternal and paternal homologous regions can be differentially organized. Finally, using restraint-based modeling to integrate imaging and Hi-C data, we implement a method–integrative modeling of genomic regions (IMGR)–to increase the genomic resolution of our traces to 10 kb.