Cargando…
Benchmarking Danish hospitals on mortality and readmission rates after cardiovascular admission
OBJECTIVE: The aim of this study was to examine hospital performance measures that account more comprehensively for unique mixes of patients’ characteristics. DESIGN: Nationwide cohort registry-based study within a population-based health care system. PARTICIPANTS: In this study, 331,513 patients di...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6324920/ https://www.ncbi.nlm.nih.gov/pubmed/30655706 http://dx.doi.org/10.2147/CLEP.S189263 |
_version_ | 1783386057231826944 |
---|---|
author | Ridgeway, Greg Nørgaard, Mette Rasmussen, Thomas Bøjer Finkle, William D Pedersen, Lars Bøtker, Hans Erik Sørensen, Henrik Toft |
author_facet | Ridgeway, Greg Nørgaard, Mette Rasmussen, Thomas Bøjer Finkle, William D Pedersen, Lars Bøtker, Hans Erik Sørensen, Henrik Toft |
author_sort | Ridgeway, Greg |
collection | PubMed |
description | OBJECTIVE: The aim of this study was to examine hospital performance measures that account more comprehensively for unique mixes of patients’ characteristics. DESIGN: Nationwide cohort registry-based study within a population-based health care system. PARTICIPANTS: In this study, 331,513 patients discharged with a primary cardiovascular diagnosis from 1 of 26 Danish hospitals during 2011–2015 were included. Data covering all Danish hospitals were drawn from the Danish National Patient Registry and the Danish National Health Service Prescription Database. MAIN OUTCOME MEASURES: Thirty-day post-admission mortality rates, 30-day post-discharge readmission rates, and the associated numbers needed to harm were measured. METHODS: For each index hospital, we used a non-parametric logistic regression model to compute propensity scores. Propensity score weighted patients treated at other hospitals collectively resembled patients treated at the index hospital in terms of age, sex, primary discharge diagnosis, diagnosis history, medications, previous cardiac procedures, and comorbidities. Outcomes for the weighted patients treated at other hospitals formed benchmarks for the index hospital. Doubly robust regression formally tested whether the outcomes of patients at the index hospital differed from the outcomes of the patients used to form the benchmarks. For each index hospital, we computed the false discovery rate, ie, the probability of being incorrect if we claimed the hospital differed from its benchmark. RESULTS: Five hospitals exceeded their benchmark for 30-day mortality rates, with the number needed to harm ranging between 55 and 137. Seven hospitals exceeded their benchmark for readmission, with the number needed to harm ranging from 22 to 71. Our benchmarking approach flagged fewer hospitals as outliers compared with conventional regression methods. CONCLUSION: Conventional methods flag more hospitals as outliers than our benchmarking approach. Our benchmarking approach accounts more thoroughly for differences in hospitals’ patient case mix, reducing the risk of false-positive selection of suspected outliers. A more comprehensive system of hospital performance measurement could be based on this approach. |
format | Online Article Text |
id | pubmed-6324920 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Dove Medical Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-63249202019-01-17 Benchmarking Danish hospitals on mortality and readmission rates after cardiovascular admission Ridgeway, Greg Nørgaard, Mette Rasmussen, Thomas Bøjer Finkle, William D Pedersen, Lars Bøtker, Hans Erik Sørensen, Henrik Toft Clin Epidemiol Original Research OBJECTIVE: The aim of this study was to examine hospital performance measures that account more comprehensively for unique mixes of patients’ characteristics. DESIGN: Nationwide cohort registry-based study within a population-based health care system. PARTICIPANTS: In this study, 331,513 patients discharged with a primary cardiovascular diagnosis from 1 of 26 Danish hospitals during 2011–2015 were included. Data covering all Danish hospitals were drawn from the Danish National Patient Registry and the Danish National Health Service Prescription Database. MAIN OUTCOME MEASURES: Thirty-day post-admission mortality rates, 30-day post-discharge readmission rates, and the associated numbers needed to harm were measured. METHODS: For each index hospital, we used a non-parametric logistic regression model to compute propensity scores. Propensity score weighted patients treated at other hospitals collectively resembled patients treated at the index hospital in terms of age, sex, primary discharge diagnosis, diagnosis history, medications, previous cardiac procedures, and comorbidities. Outcomes for the weighted patients treated at other hospitals formed benchmarks for the index hospital. Doubly robust regression formally tested whether the outcomes of patients at the index hospital differed from the outcomes of the patients used to form the benchmarks. For each index hospital, we computed the false discovery rate, ie, the probability of being incorrect if we claimed the hospital differed from its benchmark. RESULTS: Five hospitals exceeded their benchmark for 30-day mortality rates, with the number needed to harm ranging between 55 and 137. Seven hospitals exceeded their benchmark for readmission, with the number needed to harm ranging from 22 to 71. Our benchmarking approach flagged fewer hospitals as outliers compared with conventional regression methods. CONCLUSION: Conventional methods flag more hospitals as outliers than our benchmarking approach. Our benchmarking approach accounts more thoroughly for differences in hospitals’ patient case mix, reducing the risk of false-positive selection of suspected outliers. A more comprehensive system of hospital performance measurement could be based on this approach. Dove Medical Press 2019-01-04 /pmc/articles/PMC6324920/ /pubmed/30655706 http://dx.doi.org/10.2147/CLEP.S189263 Text en © 2019 Ridgeway et al. This work is published and licensed by Dove Medical Press Limited The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. |
spellingShingle | Original Research Ridgeway, Greg Nørgaard, Mette Rasmussen, Thomas Bøjer Finkle, William D Pedersen, Lars Bøtker, Hans Erik Sørensen, Henrik Toft Benchmarking Danish hospitals on mortality and readmission rates after cardiovascular admission |
title | Benchmarking Danish hospitals on mortality and readmission rates after cardiovascular admission |
title_full | Benchmarking Danish hospitals on mortality and readmission rates after cardiovascular admission |
title_fullStr | Benchmarking Danish hospitals on mortality and readmission rates after cardiovascular admission |
title_full_unstemmed | Benchmarking Danish hospitals on mortality and readmission rates after cardiovascular admission |
title_short | Benchmarking Danish hospitals on mortality and readmission rates after cardiovascular admission |
title_sort | benchmarking danish hospitals on mortality and readmission rates after cardiovascular admission |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6324920/ https://www.ncbi.nlm.nih.gov/pubmed/30655706 http://dx.doi.org/10.2147/CLEP.S189263 |
work_keys_str_mv | AT ridgewaygreg benchmarkingdanishhospitalsonmortalityandreadmissionratesaftercardiovascularadmission AT nørgaardmette benchmarkingdanishhospitalsonmortalityandreadmissionratesaftercardiovascularadmission AT rasmussenthomasbøjer benchmarkingdanishhospitalsonmortalityandreadmissionratesaftercardiovascularadmission AT finklewilliamd benchmarkingdanishhospitalsonmortalityandreadmissionratesaftercardiovascularadmission AT pedersenlars benchmarkingdanishhospitalsonmortalityandreadmissionratesaftercardiovascularadmission AT bøtkerhanserik benchmarkingdanishhospitalsonmortalityandreadmissionratesaftercardiovascularadmission AT sørensenhenriktoft benchmarkingdanishhospitalsonmortalityandreadmissionratesaftercardiovascularadmission |