Cargando…

The entropy solution of a reaction–diffusion equation on an unbounded domain

The degenerate parabolic equations from the reaction–diffusion problems are considered on an unbounded domain [Formula: see text] . It is expected that only a partial boundary should be imposed the homogeneous boundary value, but how to give the analytic expression of this partial boundary seems ver...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhan, Huashui, Li, Yongping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6325098/
https://www.ncbi.nlm.nih.gov/pubmed/30839867
http://dx.doi.org/10.1186/s13660-019-1956-3
Descripción
Sumario:The degenerate parabolic equations from the reaction–diffusion problems are considered on an unbounded domain [Formula: see text] . It is expected that only a partial boundary should be imposed the homogeneous boundary value, but how to give the analytic expression of this partial boundary seems very difficult. A new method, which is called the general characteristic function method, is introduced in this paper. By this new method, a reasonable analytic expression of the partial boundary value condition is found. Moreover, the stability of the entropy solutions is established based on this partial boundary value condition.