Cargando…
Genetics of narcolepsy
Narcolepsy is a term that was initially coined by Gélineáu in 1880 and is a chronic neurological sleep disorder that manifests as a difficulty in maintaining wakefulness and sleep for long periods. Currently, narcolepsy is subdivided into two types according to the International Classification of Sl...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6325123/ https://www.ncbi.nlm.nih.gov/pubmed/30652006 http://dx.doi.org/10.1038/s41439-018-0033-7 |
_version_ | 1783386080734609408 |
---|---|
author | Miyagawa, Taku Tokunaga, Katsushi |
author_facet | Miyagawa, Taku Tokunaga, Katsushi |
author_sort | Miyagawa, Taku |
collection | PubMed |
description | Narcolepsy is a term that was initially coined by Gélineáu in 1880 and is a chronic neurological sleep disorder that manifests as a difficulty in maintaining wakefulness and sleep for long periods. Currently, narcolepsy is subdivided into two types according to the International Classification of Sleep Disorders, 3rd edition: narcolepsy type 1 (NT1) and narcolepsy type 2 (NT2). NT1 is characterized by excessive daytime sleepiness, cataplexy, hypnagogic hallucinations, and sleep paralysis and is caused by a marked reduction in neurons in the hypothalamus that produce orexin (hypocretin), which is a wakefulness-associated neuropeptide. Except for cataplexy, NT2 exhibits most of the same symptoms as NT1. NT1 is a multifactorial disease, and genetic variations at multiple loci are associated with NT1. Almost all patients with NT1 carry the specific human leukocyte antigen (HLA) allele HLA-DQB1(*)06:02. Genome-wide association studies have uncovered >10 genomic variations associated with NT1. Rare variants associated with NT1 have also been identified by DNA genome sequencing. NT2 is also a complex disorder, but its underlying genetic architecture is poorly understood. However, several studies have revealed loci that increase susceptibility to NT2. The currently identified loci cannot explain the heritability of narcolepsy (NT1 and NT2). We expect that future genomic research will provide important contributions to our understanding of the genetic basis and pathogenesis of narcolepsy. |
format | Online Article Text |
id | pubmed-6325123 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-63251232019-01-16 Genetics of narcolepsy Miyagawa, Taku Tokunaga, Katsushi Hum Genome Var Review Article Narcolepsy is a term that was initially coined by Gélineáu in 1880 and is a chronic neurological sleep disorder that manifests as a difficulty in maintaining wakefulness and sleep for long periods. Currently, narcolepsy is subdivided into two types according to the International Classification of Sleep Disorders, 3rd edition: narcolepsy type 1 (NT1) and narcolepsy type 2 (NT2). NT1 is characterized by excessive daytime sleepiness, cataplexy, hypnagogic hallucinations, and sleep paralysis and is caused by a marked reduction in neurons in the hypothalamus that produce orexin (hypocretin), which is a wakefulness-associated neuropeptide. Except for cataplexy, NT2 exhibits most of the same symptoms as NT1. NT1 is a multifactorial disease, and genetic variations at multiple loci are associated with NT1. Almost all patients with NT1 carry the specific human leukocyte antigen (HLA) allele HLA-DQB1(*)06:02. Genome-wide association studies have uncovered >10 genomic variations associated with NT1. Rare variants associated with NT1 have also been identified by DNA genome sequencing. NT2 is also a complex disorder, but its underlying genetic architecture is poorly understood. However, several studies have revealed loci that increase susceptibility to NT2. The currently identified loci cannot explain the heritability of narcolepsy (NT1 and NT2). We expect that future genomic research will provide important contributions to our understanding of the genetic basis and pathogenesis of narcolepsy. Nature Publishing Group UK 2019-01-08 /pmc/articles/PMC6325123/ /pubmed/30652006 http://dx.doi.org/10.1038/s41439-018-0033-7 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Review Article Miyagawa, Taku Tokunaga, Katsushi Genetics of narcolepsy |
title | Genetics of narcolepsy |
title_full | Genetics of narcolepsy |
title_fullStr | Genetics of narcolepsy |
title_full_unstemmed | Genetics of narcolepsy |
title_short | Genetics of narcolepsy |
title_sort | genetics of narcolepsy |
topic | Review Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6325123/ https://www.ncbi.nlm.nih.gov/pubmed/30652006 http://dx.doi.org/10.1038/s41439-018-0033-7 |
work_keys_str_mv | AT miyagawataku geneticsofnarcolepsy AT tokunagakatsushi geneticsofnarcolepsy |