Cargando…

Genome-wide profiling of adenine base editor specificity by EndoV-seq

The adenine base editor (ABE), capable of catalyzing A•T to G•C conversions, is an important gene editing toolbox. Here, we systematically evaluate genome-wide off-target deamination by ABEs using the EndoV-seq platform we developed. EndoV-seq utilizes Endonuclease V to nick the inosine-containing D...

Descripción completa

Detalles Bibliográficos
Autores principales: Liang, Puping, Xie, Xiaowei, Zhi, Shengyao, Sun, Hongwei, Zhang, Xiya, Chen, Yu, Chen, Yuxi, Xiong, Yuanyan, Ma, Wenbin, Liu, Dan, Huang, Junjiu, Songyang, Zhou
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6325126/
https://www.ncbi.nlm.nih.gov/pubmed/30622278
http://dx.doi.org/10.1038/s41467-018-07988-z
Descripción
Sumario:The adenine base editor (ABE), capable of catalyzing A•T to G•C conversions, is an important gene editing toolbox. Here, we systematically evaluate genome-wide off-target deamination by ABEs using the EndoV-seq platform we developed. EndoV-seq utilizes Endonuclease V to nick the inosine-containing DNA strand of genomic DNA deaminated by ABE in vitro. The treated DNA is then whole-genome sequenced to identify off-target sites. Of the eight gRNAs we tested with ABE, 2–19 (with an average of 8.0) off-target sites are found, significantly fewer than those found for canonical Cas9 nuclease (7–320, 160.7 on average). In vivo off-target deamination is further validated through target site deep sequencing. Moreover, we demonstrated that six different ABE-gRNA complexes could be examined in a single EndoV-seq assay. Our study presents the first detection method to evaluate genome-wide off-target effects of ABE, and reveals possible similarities and differences between ABE and canonical Cas9 nuclease.