Cargando…

Asymmetrical Relationship between Prediction and Control during Visuomotor Adaptation

Current theories suggest that the ability to control the body and to predict its associated sensory consequences is key for skilled motor behavior. It is also suggested that these abilities need to be updated when the mapping between motor commands and sensory consequences is altered. Here we challe...

Descripción completa

Detalles Bibliográficos
Autores principales: Mathew, James, Bernier, Pierre-Michel, Danion, Frederic R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Society for Neuroscience 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6325531/
https://www.ncbi.nlm.nih.gov/pubmed/30627629
http://dx.doi.org/10.1523/ENEURO.0280-18.2018
Descripción
Sumario:Current theories suggest that the ability to control the body and to predict its associated sensory consequences is key for skilled motor behavior. It is also suggested that these abilities need to be updated when the mapping between motor commands and sensory consequences is altered. Here we challenge this view by investigating the transfer of adaptation to rotated visual feedback between one task in which human participants had to control a cursor with their hand in order to track a moving target, and another in which they had to predict with their eyes the visual consequences of their hand movement on the cursor. Hand and eye tracking performances were evaluated respectively through cursor–target and eye–cursor distance. Results reveal a striking dissociation: although prior adaptation of hand tracking greatly facilitates eye tracking, the adaptation of eye tracking does not transfer to hand tracking. We conclude that although the update of control is associated with the update of prediction, prediction can be updated independently of control. To account for this pattern of results, we propose that task demands mediate the update of prediction and control. Although a joint update of prediction and control seemed mandatory for success in our hand tracking task, the update of control was only facultative for success in our eye tracking task. More generally, those results promote the view that prediction and control are mediated by separate neural processes and suggest that people can learn to predict movement consequences without necessarily promoting their ability to control these movements.