Cargando…

Nociceptin/Orphanin-FQ Inhibits Gonadotropin-Releasing Hormone Neurons via G-Protein-Gated Inwardly Rectifying Potassium Channels

The pulsatile release of gonadotropin-releasing hormone (GnRH) is a key feature of the hypothalamic–pituitary–gonadal axis. Kisspeptin neurons in the arcuate nucleus (ARC) trigger GnRH neuronal activity, but how GnRH neurons return to baseline electrical activity is unknown. Nociceptin/orphanin-FQ (...

Descripción completa

Detalles Bibliográficos
Autores principales: Constantin, Stephanie, Wray, Susan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Society for Neuroscience 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6325553/
https://www.ncbi.nlm.nih.gov/pubmed/30627649
http://dx.doi.org/10.1523/ENEURO.0161-18.2018
_version_ 1783386141655826432
author Constantin, Stephanie
Wray, Susan
author_facet Constantin, Stephanie
Wray, Susan
author_sort Constantin, Stephanie
collection PubMed
description The pulsatile release of gonadotropin-releasing hormone (GnRH) is a key feature of the hypothalamic–pituitary–gonadal axis. Kisspeptin neurons in the arcuate nucleus (ARC) trigger GnRH neuronal activity, but how GnRH neurons return to baseline electrical activity is unknown. Nociceptin/orphanin-FQ (OFQ) is an inhibitory neuromodulator. ARC proopiomelanocortin (POMC) neurons, known to receive inputs from ARC kisspeptin neurons, contact GnRH neurons and coexpress OFQ in the rat. In the present study, the effect of OFQ(1-13) on GnRH neurons was determined in the mouse. We identified transcripts for the OFQ receptor [opioid receptor like 1 (ORL1)] in GnRH neurons, and, using two-model systems (explants and slices), we found that OFQ exerted a potent inhibition on GnRH neurons, with or without excitatory inputs. We confirmed that the inhibition was mediated by ORL1 via G(i/o)-protein coupling. The inhibition, occurring independently of levels of intracellular cyclic adenosine monophosphate, was sensitive to inwardly rectifying potassium channels. The only specific blocker of G(i/o)-protein-coupled inwardly rectifying potassium (GIRK) channels, tertiapin-Q (TPNQ), was ineffective in the inhibition of OFQ. Two GIRK activators, one sharing the binding site of TPNQ and one active only on GIRK1-containing GIRK channels, failed to trigger an inhibition. In contrast, protein kinase C phosphorylation activation, known to inhibit GIRK2-mediated currents, prevented the OFQ inhibition. These results indicate a specific combination of GIRK subunits, GIRK2/3 in GnRH neurons. In vivo, double-labeled OFQ/POMC fibers were found in the vicinity of GnRH neurons, and OFQ fibers apposed GnRH neurons. Together, this study brings to light a potent neuromodulator of GnRH neurons.
format Online
Article
Text
id pubmed-6325553
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Society for Neuroscience
record_format MEDLINE/PubMed
spelling pubmed-63255532019-01-09 Nociceptin/Orphanin-FQ Inhibits Gonadotropin-Releasing Hormone Neurons via G-Protein-Gated Inwardly Rectifying Potassium Channels Constantin, Stephanie Wray, Susan eNeuro New Research The pulsatile release of gonadotropin-releasing hormone (GnRH) is a key feature of the hypothalamic–pituitary–gonadal axis. Kisspeptin neurons in the arcuate nucleus (ARC) trigger GnRH neuronal activity, but how GnRH neurons return to baseline electrical activity is unknown. Nociceptin/orphanin-FQ (OFQ) is an inhibitory neuromodulator. ARC proopiomelanocortin (POMC) neurons, known to receive inputs from ARC kisspeptin neurons, contact GnRH neurons and coexpress OFQ in the rat. In the present study, the effect of OFQ(1-13) on GnRH neurons was determined in the mouse. We identified transcripts for the OFQ receptor [opioid receptor like 1 (ORL1)] in GnRH neurons, and, using two-model systems (explants and slices), we found that OFQ exerted a potent inhibition on GnRH neurons, with or without excitatory inputs. We confirmed that the inhibition was mediated by ORL1 via G(i/o)-protein coupling. The inhibition, occurring independently of levels of intracellular cyclic adenosine monophosphate, was sensitive to inwardly rectifying potassium channels. The only specific blocker of G(i/o)-protein-coupled inwardly rectifying potassium (GIRK) channels, tertiapin-Q (TPNQ), was ineffective in the inhibition of OFQ. Two GIRK activators, one sharing the binding site of TPNQ and one active only on GIRK1-containing GIRK channels, failed to trigger an inhibition. In contrast, protein kinase C phosphorylation activation, known to inhibit GIRK2-mediated currents, prevented the OFQ inhibition. These results indicate a specific combination of GIRK subunits, GIRK2/3 in GnRH neurons. In vivo, double-labeled OFQ/POMC fibers were found in the vicinity of GnRH neurons, and OFQ fibers apposed GnRH neurons. Together, this study brings to light a potent neuromodulator of GnRH neurons. Society for Neuroscience 2018-12-26 /pmc/articles/PMC6325553/ /pubmed/30627649 http://dx.doi.org/10.1523/ENEURO.0161-18.2018 Text en Copyright © 2018 Constantin and Wray http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.
spellingShingle New Research
Constantin, Stephanie
Wray, Susan
Nociceptin/Orphanin-FQ Inhibits Gonadotropin-Releasing Hormone Neurons via G-Protein-Gated Inwardly Rectifying Potassium Channels
title Nociceptin/Orphanin-FQ Inhibits Gonadotropin-Releasing Hormone Neurons via G-Protein-Gated Inwardly Rectifying Potassium Channels
title_full Nociceptin/Orphanin-FQ Inhibits Gonadotropin-Releasing Hormone Neurons via G-Protein-Gated Inwardly Rectifying Potassium Channels
title_fullStr Nociceptin/Orphanin-FQ Inhibits Gonadotropin-Releasing Hormone Neurons via G-Protein-Gated Inwardly Rectifying Potassium Channels
title_full_unstemmed Nociceptin/Orphanin-FQ Inhibits Gonadotropin-Releasing Hormone Neurons via G-Protein-Gated Inwardly Rectifying Potassium Channels
title_short Nociceptin/Orphanin-FQ Inhibits Gonadotropin-Releasing Hormone Neurons via G-Protein-Gated Inwardly Rectifying Potassium Channels
title_sort nociceptin/orphanin-fq inhibits gonadotropin-releasing hormone neurons via g-protein-gated inwardly rectifying potassium channels
topic New Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6325553/
https://www.ncbi.nlm.nih.gov/pubmed/30627649
http://dx.doi.org/10.1523/ENEURO.0161-18.2018
work_keys_str_mv AT constantinstephanie nociceptinorphaninfqinhibitsgonadotropinreleasinghormoneneuronsviagproteingatedinwardlyrectifyingpotassiumchannels
AT wraysusan nociceptinorphaninfqinhibitsgonadotropinreleasinghormoneneuronsviagproteingatedinwardlyrectifyingpotassiumchannels