Cargando…

Sodium Ion Storage: TiO(2)‐Coated Interlayer‐Expanded MoSe(2)/Phosphorus‐Doped Carbon Nanospheres for Ultrafast and Ultralong Cycling Sodium Storage (Adv. Sci. 1/2019)

To guarantee the large‐scale and sustainable utilization of renewable clean energy, sodium‐ion batteries are considered as one of the most promising energy storage tools. In article number 1801222, Wenpei Kang, Daofeng Sun, Yuliang Cao, and co‐workers report a potential anode material of interlayer‐...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yuyu, Wang, Yunxiao, Kang, Wenpei, Cao, Dongwei, Li, Chenxu, Cao, Dongxu, Kang, Zixi, Sun, Daofeng, Wang, Rongming, Cao, Yuliang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6325573/
http://dx.doi.org/10.1002/advs.201970005
Descripción
Sumario:To guarantee the large‐scale and sustainable utilization of renewable clean energy, sodium‐ion batteries are considered as one of the most promising energy storage tools. In article number 1801222, Wenpei Kang, Daofeng Sun, Yuliang Cao, and co‐workers report a potential anode material of interlayer‐expanded MoSe(2)/phosphorus‐doped carbon hybrid nanospheres coated by anatase TiO(2) (denoted as MoSe(2)/P‐C@TiO(2)), exhibiting unprecedented cycling stability and ultrafast pseudocapacitive sodium storage capability. [Image: see text]