Cargando…
Synthesis of a Novel Disperse Reactive Dye Involving a Versatile Bridge Group for the Sustainable Coloration of Natural Fibers in Supercritical Carbon Dioxide
Disperse reactive dyes with appropriate chemical structure are key for the coloration of natural fibers in the water‐free environmentally friendly medium of supercritical carbon dioxide with various advantages. The objective of this work is to design and synthesize a novel anthraquinonoid disperse r...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6325576/ https://www.ncbi.nlm.nih.gov/pubmed/30643724 http://dx.doi.org/10.1002/advs.201801368 |
_version_ | 1783386147016146944 |
---|---|
author | Fan, Yue Zhang, Yan‐Qin Yan, Kai Long, Jia‐Jie |
author_facet | Fan, Yue Zhang, Yan‐Qin Yan, Kai Long, Jia‐Jie |
author_sort | Fan, Yue |
collection | PubMed |
description | Disperse reactive dyes with appropriate chemical structure are key for the coloration of natural fibers in the water‐free environmentally friendly medium of supercritical carbon dioxide with various advantages. The objective of this work is to design and synthesize a novel anthraquinonoid disperse reactive dye involving a versatile bridge group to improve the coloration properties of the dye in supercritical carbon dioxide. Cross‐coupling condensation based on an Ullmann reaction between N‐phenylethylenediamine and 1‐chloroanthraquinone in a ligand‐free system is investigated by optimizing the synthesis parameters. Notable influences are observed from the dosages of N,N‐dimethyl formamide and potassium hydroxide, as well as the system temperature and reaction duration, on the isolated yield of the dye precursor. An optimized process is also recommended for synthesizing the designed novel dye. Then, the chemical structure, color characteristics, and coloration properties of the obtained dye are further investigated and successfully characterized by utilizing Fourier‐transform infrared analysis, (1)H and (13)C nuclear magnetic resonance spectroscopy, UV–vis absorption spectroscopy, elemental analysis, and liquid chromatography‐mass spectrometry. Additionally, practical coloration experiments are performed with cotton, silk, and wool in a supercritical carbon dioxide medium. |
format | Online Article Text |
id | pubmed-6325576 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-63255762019-01-14 Synthesis of a Novel Disperse Reactive Dye Involving a Versatile Bridge Group for the Sustainable Coloration of Natural Fibers in Supercritical Carbon Dioxide Fan, Yue Zhang, Yan‐Qin Yan, Kai Long, Jia‐Jie Adv Sci (Weinh) Full Papers Disperse reactive dyes with appropriate chemical structure are key for the coloration of natural fibers in the water‐free environmentally friendly medium of supercritical carbon dioxide with various advantages. The objective of this work is to design and synthesize a novel anthraquinonoid disperse reactive dye involving a versatile bridge group to improve the coloration properties of the dye in supercritical carbon dioxide. Cross‐coupling condensation based on an Ullmann reaction between N‐phenylethylenediamine and 1‐chloroanthraquinone in a ligand‐free system is investigated by optimizing the synthesis parameters. Notable influences are observed from the dosages of N,N‐dimethyl formamide and potassium hydroxide, as well as the system temperature and reaction duration, on the isolated yield of the dye precursor. An optimized process is also recommended for synthesizing the designed novel dye. Then, the chemical structure, color characteristics, and coloration properties of the obtained dye are further investigated and successfully characterized by utilizing Fourier‐transform infrared analysis, (1)H and (13)C nuclear magnetic resonance spectroscopy, UV–vis absorption spectroscopy, elemental analysis, and liquid chromatography‐mass spectrometry. Additionally, practical coloration experiments are performed with cotton, silk, and wool in a supercritical carbon dioxide medium. John Wiley and Sons Inc. 2018-11-08 /pmc/articles/PMC6325576/ /pubmed/30643724 http://dx.doi.org/10.1002/advs.201801368 Text en © 2018 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Full Papers Fan, Yue Zhang, Yan‐Qin Yan, Kai Long, Jia‐Jie Synthesis of a Novel Disperse Reactive Dye Involving a Versatile Bridge Group for the Sustainable Coloration of Natural Fibers in Supercritical Carbon Dioxide |
title | Synthesis of a Novel Disperse Reactive Dye Involving a Versatile Bridge Group for the Sustainable Coloration of Natural Fibers in Supercritical Carbon Dioxide |
title_full | Synthesis of a Novel Disperse Reactive Dye Involving a Versatile Bridge Group for the Sustainable Coloration of Natural Fibers in Supercritical Carbon Dioxide |
title_fullStr | Synthesis of a Novel Disperse Reactive Dye Involving a Versatile Bridge Group for the Sustainable Coloration of Natural Fibers in Supercritical Carbon Dioxide |
title_full_unstemmed | Synthesis of a Novel Disperse Reactive Dye Involving a Versatile Bridge Group for the Sustainable Coloration of Natural Fibers in Supercritical Carbon Dioxide |
title_short | Synthesis of a Novel Disperse Reactive Dye Involving a Versatile Bridge Group for the Sustainable Coloration of Natural Fibers in Supercritical Carbon Dioxide |
title_sort | synthesis of a novel disperse reactive dye involving a versatile bridge group for the sustainable coloration of natural fibers in supercritical carbon dioxide |
topic | Full Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6325576/ https://www.ncbi.nlm.nih.gov/pubmed/30643724 http://dx.doi.org/10.1002/advs.201801368 |
work_keys_str_mv | AT fanyue synthesisofanoveldispersereactivedyeinvolvingaversatilebridgegroupforthesustainablecolorationofnaturalfibersinsupercriticalcarbondioxide AT zhangyanqin synthesisofanoveldispersereactivedyeinvolvingaversatilebridgegroupforthesustainablecolorationofnaturalfibersinsupercriticalcarbondioxide AT yankai synthesisofanoveldispersereactivedyeinvolvingaversatilebridgegroupforthesustainablecolorationofnaturalfibersinsupercriticalcarbondioxide AT longjiajie synthesisofanoveldispersereactivedyeinvolvingaversatilebridgegroupforthesustainablecolorationofnaturalfibersinsupercriticalcarbondioxide |