Cargando…

Glyceraldehyde‐3‐phosphate dehydrogenase from Citrobacter sp. S‐77 is post‐translationally modified by CoA (protein CoAlation) under oxidative stress

Protein CoAlation (S‐thiolation by coenzyme A) has recently emerged as an alternative redox‐regulated post‐translational modification by which protein thiols are covalently modified with coenzyme A (CoA). However, little is known about the role and mechanism of this post‐translational modification....

Descripción completa

Detalles Bibliográficos
Autores principales: Tsuji, Kohsei, Yoon, Ki‐Seok, Ogo, Seiji
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6325607/
https://www.ncbi.nlm.nih.gov/pubmed/30652074
http://dx.doi.org/10.1002/2211-5463.12542
Descripción
Sumario:Protein CoAlation (S‐thiolation by coenzyme A) has recently emerged as an alternative redox‐regulated post‐translational modification by which protein thiols are covalently modified with coenzyme A (CoA). However, little is known about the role and mechanism of this post‐translational modification. In the present study, we investigated CoAlation of glyceraldehyde‐3‐phosphate dehydrogenase (GAPDH) from a facultative anaerobic Gram‐negative bacterium Citrobacter sp. S‐77 (Cb GAPDH). GAPDH is a key glycolytic enzyme whose activity relies on the thiol‐based redox‐regulated post‐translational modifications of active‐site cysteine. LC‐MS/MS analysis revealed that CoAlation of Cb GAPDH occurred in vivo under sodium hypochlorite (NaOCl) stress. The purified Cb GAPDH was highly sensitive to overoxidation by H(2)O(2) and NaOCl, which resulted in irreversible enzyme inactivation. By contrast, treatment with coenzyme A disulphide (CoASSCoA) or H(2)O(2)/NaOCl in the presence of CoA led to CoAlation and inactivation of the enzyme; activity could be recovered after incubation with dithiothreitol, glutathione and CoA. CoAlation of the enzyme in vitro was confirmed by mass spectrometry. The presence of a substrate, glyceraldehyde‐3‐phosphate, fully protected Cb GAPDH from inactivation by CoAlation, suggesting that the inactivation is due to the formation of mixed disulphides between CoA and the active‐site cysteine Cys149. A molecular docking study also supported the formation of mixed disulphide without steric constraints. These observations suggest that CoAlation is an alternative mechanism to protect the redox‐sensitive thiol (Cys149) of Cb GAPDH against irreversible oxidation, thereby regulating enzyme activity under oxidative stress.