Cargando…

TiO(2)‐Coated Interlayer‐Expanded MoSe(2)/Phosphorus‐Doped Carbon Nanospheres for Ultrafast and Ultralong Cycling Sodium Storage

Based on multielectron conversion reactions, layered transition metal dichalcogenides are considered promising electrode materials for sodium‐ion batteries, but suffer from poor cycling performance and rate capability due to their low intrinsic conductivity and severe volume variations. Here, interl...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yuyu, Wang, Yunxiao, Kang, Wenpei, Cao, Dongwei, Li, Chenxu, Cao, Dongxu, Kang, Zixi, Sun, Daofeng, Wang, Rongming, Cao, Yuliang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6325630/
https://www.ncbi.nlm.nih.gov/pubmed/30643720
http://dx.doi.org/10.1002/advs.201801222
_version_ 1783386158344962048
author Wang, Yuyu
Wang, Yunxiao
Kang, Wenpei
Cao, Dongwei
Li, Chenxu
Cao, Dongxu
Kang, Zixi
Sun, Daofeng
Wang, Rongming
Cao, Yuliang
author_facet Wang, Yuyu
Wang, Yunxiao
Kang, Wenpei
Cao, Dongwei
Li, Chenxu
Cao, Dongxu
Kang, Zixi
Sun, Daofeng
Wang, Rongming
Cao, Yuliang
author_sort Wang, Yuyu
collection PubMed
description Based on multielectron conversion reactions, layered transition metal dichalcogenides are considered promising electrode materials for sodium‐ion batteries, but suffer from poor cycling performance and rate capability due to their low intrinsic conductivity and severe volume variations. Here, interlayer‐expanded MoSe(2)/phosphorus‐doped carbon hybrid nanospheres coated by anatase TiO(2) (denoted as MoSe(2)/P‐C@TiO(2)) are prepared by a facile hydrolysis reaction, in which TiO(2) coating polypyrrole‐phosphomolybdic acid is utilized as a novel precursor followed by a selenization process. Benefiting from synergistic effects of MoSe(2), phosphorus‐doped carbon, and TiO(2), the hybrid nanospheres manifest unprecedented cycling stability and ultrafast pseudocapacitive sodium storage capability. The MoSe(2)/P‐C@TiO(2) delivers decent reversible capacities of 214 mAh g(−1) at 5.0 A g(−1) for 8000 cycles, 154 mAh g(−1) at 10.0 A g(−1) for 10000 cycles, and an exceptional rate capability up to 20.0 A g(−1) with a capacity of ≈175 mAh g(−1) in a voltage range of 0.5–3.0 V. Coupled with a Na(3)V(2)(PO(4))(3)@C cathode, a full cell successfully confirms a reversible capacity of 242.2 mAh g(−1) at 0.5 A g(−1) for 100 cycles with a coulombic efficiency over 99%.
format Online
Article
Text
id pubmed-6325630
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-63256302019-01-14 TiO(2)‐Coated Interlayer‐Expanded MoSe(2)/Phosphorus‐Doped Carbon Nanospheres for Ultrafast and Ultralong Cycling Sodium Storage Wang, Yuyu Wang, Yunxiao Kang, Wenpei Cao, Dongwei Li, Chenxu Cao, Dongxu Kang, Zixi Sun, Daofeng Wang, Rongming Cao, Yuliang Adv Sci (Weinh) Full Papers Based on multielectron conversion reactions, layered transition metal dichalcogenides are considered promising electrode materials for sodium‐ion batteries, but suffer from poor cycling performance and rate capability due to their low intrinsic conductivity and severe volume variations. Here, interlayer‐expanded MoSe(2)/phosphorus‐doped carbon hybrid nanospheres coated by anatase TiO(2) (denoted as MoSe(2)/P‐C@TiO(2)) are prepared by a facile hydrolysis reaction, in which TiO(2) coating polypyrrole‐phosphomolybdic acid is utilized as a novel precursor followed by a selenization process. Benefiting from synergistic effects of MoSe(2), phosphorus‐doped carbon, and TiO(2), the hybrid nanospheres manifest unprecedented cycling stability and ultrafast pseudocapacitive sodium storage capability. The MoSe(2)/P‐C@TiO(2) delivers decent reversible capacities of 214 mAh g(−1) at 5.0 A g(−1) for 8000 cycles, 154 mAh g(−1) at 10.0 A g(−1) for 10000 cycles, and an exceptional rate capability up to 20.0 A g(−1) with a capacity of ≈175 mAh g(−1) in a voltage range of 0.5–3.0 V. Coupled with a Na(3)V(2)(PO(4))(3)@C cathode, a full cell successfully confirms a reversible capacity of 242.2 mAh g(−1) at 0.5 A g(−1) for 100 cycles with a coulombic efficiency over 99%. John Wiley and Sons Inc. 2018-11-09 /pmc/articles/PMC6325630/ /pubmed/30643720 http://dx.doi.org/10.1002/advs.201801222 Text en © 2018 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Full Papers
Wang, Yuyu
Wang, Yunxiao
Kang, Wenpei
Cao, Dongwei
Li, Chenxu
Cao, Dongxu
Kang, Zixi
Sun, Daofeng
Wang, Rongming
Cao, Yuliang
TiO(2)‐Coated Interlayer‐Expanded MoSe(2)/Phosphorus‐Doped Carbon Nanospheres for Ultrafast and Ultralong Cycling Sodium Storage
title TiO(2)‐Coated Interlayer‐Expanded MoSe(2)/Phosphorus‐Doped Carbon Nanospheres for Ultrafast and Ultralong Cycling Sodium Storage
title_full TiO(2)‐Coated Interlayer‐Expanded MoSe(2)/Phosphorus‐Doped Carbon Nanospheres for Ultrafast and Ultralong Cycling Sodium Storage
title_fullStr TiO(2)‐Coated Interlayer‐Expanded MoSe(2)/Phosphorus‐Doped Carbon Nanospheres for Ultrafast and Ultralong Cycling Sodium Storage
title_full_unstemmed TiO(2)‐Coated Interlayer‐Expanded MoSe(2)/Phosphorus‐Doped Carbon Nanospheres for Ultrafast and Ultralong Cycling Sodium Storage
title_short TiO(2)‐Coated Interlayer‐Expanded MoSe(2)/Phosphorus‐Doped Carbon Nanospheres for Ultrafast and Ultralong Cycling Sodium Storage
title_sort tio(2)‐coated interlayer‐expanded mose(2)/phosphorus‐doped carbon nanospheres for ultrafast and ultralong cycling sodium storage
topic Full Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6325630/
https://www.ncbi.nlm.nih.gov/pubmed/30643720
http://dx.doi.org/10.1002/advs.201801222
work_keys_str_mv AT wangyuyu tio2coatedinterlayerexpandedmose2phosphorusdopedcarbonnanospheresforultrafastandultralongcyclingsodiumstorage
AT wangyunxiao tio2coatedinterlayerexpandedmose2phosphorusdopedcarbonnanospheresforultrafastandultralongcyclingsodiumstorage
AT kangwenpei tio2coatedinterlayerexpandedmose2phosphorusdopedcarbonnanospheresforultrafastandultralongcyclingsodiumstorage
AT caodongwei tio2coatedinterlayerexpandedmose2phosphorusdopedcarbonnanospheresforultrafastandultralongcyclingsodiumstorage
AT lichenxu tio2coatedinterlayerexpandedmose2phosphorusdopedcarbonnanospheresforultrafastandultralongcyclingsodiumstorage
AT caodongxu tio2coatedinterlayerexpandedmose2phosphorusdopedcarbonnanospheresforultrafastandultralongcyclingsodiumstorage
AT kangzixi tio2coatedinterlayerexpandedmose2phosphorusdopedcarbonnanospheresforultrafastandultralongcyclingsodiumstorage
AT sundaofeng tio2coatedinterlayerexpandedmose2phosphorusdopedcarbonnanospheresforultrafastandultralongcyclingsodiumstorage
AT wangrongming tio2coatedinterlayerexpandedmose2phosphorusdopedcarbonnanospheresforultrafastandultralongcyclingsodiumstorage
AT caoyuliang tio2coatedinterlayerexpandedmose2phosphorusdopedcarbonnanospheresforultrafastandultralongcyclingsodiumstorage