Cargando…
TiO(2)‐Coated Interlayer‐Expanded MoSe(2)/Phosphorus‐Doped Carbon Nanospheres for Ultrafast and Ultralong Cycling Sodium Storage
Based on multielectron conversion reactions, layered transition metal dichalcogenides are considered promising electrode materials for sodium‐ion batteries, but suffer from poor cycling performance and rate capability due to their low intrinsic conductivity and severe volume variations. Here, interl...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6325630/ https://www.ncbi.nlm.nih.gov/pubmed/30643720 http://dx.doi.org/10.1002/advs.201801222 |
_version_ | 1783386158344962048 |
---|---|
author | Wang, Yuyu Wang, Yunxiao Kang, Wenpei Cao, Dongwei Li, Chenxu Cao, Dongxu Kang, Zixi Sun, Daofeng Wang, Rongming Cao, Yuliang |
author_facet | Wang, Yuyu Wang, Yunxiao Kang, Wenpei Cao, Dongwei Li, Chenxu Cao, Dongxu Kang, Zixi Sun, Daofeng Wang, Rongming Cao, Yuliang |
author_sort | Wang, Yuyu |
collection | PubMed |
description | Based on multielectron conversion reactions, layered transition metal dichalcogenides are considered promising electrode materials for sodium‐ion batteries, but suffer from poor cycling performance and rate capability due to their low intrinsic conductivity and severe volume variations. Here, interlayer‐expanded MoSe(2)/phosphorus‐doped carbon hybrid nanospheres coated by anatase TiO(2) (denoted as MoSe(2)/P‐C@TiO(2)) are prepared by a facile hydrolysis reaction, in which TiO(2) coating polypyrrole‐phosphomolybdic acid is utilized as a novel precursor followed by a selenization process. Benefiting from synergistic effects of MoSe(2), phosphorus‐doped carbon, and TiO(2), the hybrid nanospheres manifest unprecedented cycling stability and ultrafast pseudocapacitive sodium storage capability. The MoSe(2)/P‐C@TiO(2) delivers decent reversible capacities of 214 mAh g(−1) at 5.0 A g(−1) for 8000 cycles, 154 mAh g(−1) at 10.0 A g(−1) for 10000 cycles, and an exceptional rate capability up to 20.0 A g(−1) with a capacity of ≈175 mAh g(−1) in a voltage range of 0.5–3.0 V. Coupled with a Na(3)V(2)(PO(4))(3)@C cathode, a full cell successfully confirms a reversible capacity of 242.2 mAh g(−1) at 0.5 A g(−1) for 100 cycles with a coulombic efficiency over 99%. |
format | Online Article Text |
id | pubmed-6325630 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-63256302019-01-14 TiO(2)‐Coated Interlayer‐Expanded MoSe(2)/Phosphorus‐Doped Carbon Nanospheres for Ultrafast and Ultralong Cycling Sodium Storage Wang, Yuyu Wang, Yunxiao Kang, Wenpei Cao, Dongwei Li, Chenxu Cao, Dongxu Kang, Zixi Sun, Daofeng Wang, Rongming Cao, Yuliang Adv Sci (Weinh) Full Papers Based on multielectron conversion reactions, layered transition metal dichalcogenides are considered promising electrode materials for sodium‐ion batteries, but suffer from poor cycling performance and rate capability due to their low intrinsic conductivity and severe volume variations. Here, interlayer‐expanded MoSe(2)/phosphorus‐doped carbon hybrid nanospheres coated by anatase TiO(2) (denoted as MoSe(2)/P‐C@TiO(2)) are prepared by a facile hydrolysis reaction, in which TiO(2) coating polypyrrole‐phosphomolybdic acid is utilized as a novel precursor followed by a selenization process. Benefiting from synergistic effects of MoSe(2), phosphorus‐doped carbon, and TiO(2), the hybrid nanospheres manifest unprecedented cycling stability and ultrafast pseudocapacitive sodium storage capability. The MoSe(2)/P‐C@TiO(2) delivers decent reversible capacities of 214 mAh g(−1) at 5.0 A g(−1) for 8000 cycles, 154 mAh g(−1) at 10.0 A g(−1) for 10000 cycles, and an exceptional rate capability up to 20.0 A g(−1) with a capacity of ≈175 mAh g(−1) in a voltage range of 0.5–3.0 V. Coupled with a Na(3)V(2)(PO(4))(3)@C cathode, a full cell successfully confirms a reversible capacity of 242.2 mAh g(−1) at 0.5 A g(−1) for 100 cycles with a coulombic efficiency over 99%. John Wiley and Sons Inc. 2018-11-09 /pmc/articles/PMC6325630/ /pubmed/30643720 http://dx.doi.org/10.1002/advs.201801222 Text en © 2018 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Full Papers Wang, Yuyu Wang, Yunxiao Kang, Wenpei Cao, Dongwei Li, Chenxu Cao, Dongxu Kang, Zixi Sun, Daofeng Wang, Rongming Cao, Yuliang TiO(2)‐Coated Interlayer‐Expanded MoSe(2)/Phosphorus‐Doped Carbon Nanospheres for Ultrafast and Ultralong Cycling Sodium Storage |
title | TiO(2)‐Coated Interlayer‐Expanded MoSe(2)/Phosphorus‐Doped Carbon Nanospheres for Ultrafast and Ultralong Cycling Sodium Storage |
title_full | TiO(2)‐Coated Interlayer‐Expanded MoSe(2)/Phosphorus‐Doped Carbon Nanospheres for Ultrafast and Ultralong Cycling Sodium Storage |
title_fullStr | TiO(2)‐Coated Interlayer‐Expanded MoSe(2)/Phosphorus‐Doped Carbon Nanospheres for Ultrafast and Ultralong Cycling Sodium Storage |
title_full_unstemmed | TiO(2)‐Coated Interlayer‐Expanded MoSe(2)/Phosphorus‐Doped Carbon Nanospheres for Ultrafast and Ultralong Cycling Sodium Storage |
title_short | TiO(2)‐Coated Interlayer‐Expanded MoSe(2)/Phosphorus‐Doped Carbon Nanospheres for Ultrafast and Ultralong Cycling Sodium Storage |
title_sort | tio(2)‐coated interlayer‐expanded mose(2)/phosphorus‐doped carbon nanospheres for ultrafast and ultralong cycling sodium storage |
topic | Full Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6325630/ https://www.ncbi.nlm.nih.gov/pubmed/30643720 http://dx.doi.org/10.1002/advs.201801222 |
work_keys_str_mv | AT wangyuyu tio2coatedinterlayerexpandedmose2phosphorusdopedcarbonnanospheresforultrafastandultralongcyclingsodiumstorage AT wangyunxiao tio2coatedinterlayerexpandedmose2phosphorusdopedcarbonnanospheresforultrafastandultralongcyclingsodiumstorage AT kangwenpei tio2coatedinterlayerexpandedmose2phosphorusdopedcarbonnanospheresforultrafastandultralongcyclingsodiumstorage AT caodongwei tio2coatedinterlayerexpandedmose2phosphorusdopedcarbonnanospheresforultrafastandultralongcyclingsodiumstorage AT lichenxu tio2coatedinterlayerexpandedmose2phosphorusdopedcarbonnanospheresforultrafastandultralongcyclingsodiumstorage AT caodongxu tio2coatedinterlayerexpandedmose2phosphorusdopedcarbonnanospheresforultrafastandultralongcyclingsodiumstorage AT kangzixi tio2coatedinterlayerexpandedmose2phosphorusdopedcarbonnanospheresforultrafastandultralongcyclingsodiumstorage AT sundaofeng tio2coatedinterlayerexpandedmose2phosphorusdopedcarbonnanospheresforultrafastandultralongcyclingsodiumstorage AT wangrongming tio2coatedinterlayerexpandedmose2phosphorusdopedcarbonnanospheresforultrafastandultralongcyclingsodiumstorage AT caoyuliang tio2coatedinterlayerexpandedmose2phosphorusdopedcarbonnanospheresforultrafastandultralongcyclingsodiumstorage |