Cargando…
eToxPred: a machine learning-based approach to estimate the toxicity of drug candidates
BACKGROUND: The efficiency of drug development defined as a number of successfully launched new pharmaceuticals normalized by financial investments has significantly declined. Nonetheless, recent advances in high-throughput experimental techniques and computational modeling promise reductions in the...
Autores principales: | Pu, Limeng, Naderi, Misagh, Liu, Tairan, Wu, Hsiao-Chun, Mukhopadhyay, Supratik, Brylinski, Michal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6325674/ https://www.ncbi.nlm.nih.gov/pubmed/30621790 http://dx.doi.org/10.1186/s40360-018-0282-6 |
Ejemplares similares
-
A graph-based approach to construct target-focused libraries for virtual screening
por: Naderi, Misagh, et al.
Publicado: (2016) -
Break Down in Order To Build Up: Decomposing Small
Molecules for Fragment-Based Drug Design with eMolFrag
por: Liu, Tairan, et al.
Publicado: (2017) -
MutPred Splice: machine learning-based prediction of exonic variants that disrupt splicing
por: Mort, Matthew, et al.
Publicado: (2014) -
AmylPepPred: Amyloidogenic Peptide Prediction tool
por: Nair, Smitha Sunil Kumaran, et al.
Publicado: (2012) -
NeoPredPipe: high-throughput neoantigen prediction and recognition potential pipeline
por: Schenck, Ryan O., et al.
Publicado: (2019)