Cargando…
Integration of enzymatic data in Bacillus subtilis genome-scale metabolic model improves phenotype predictions and enables in silico design of poly-γ-glutamic acid production strains
BACKGROUND: Genome-scale metabolic models (GEMs) allow predicting metabolic phenotypes from limited data on uptake and secretion fluxes by defining the space of all the feasible solutions and excluding physio-chemically and biologically unfeasible behaviors. The integration of additional biological...
Autores principales: | Massaiu, Ilaria, Pasotti, Lorenzo, Sonnenschein, Nikolaus, Rama, Erlinda, Cavaletti, Matteo, Magni, Paolo, Calvio, Cinzia, Herrgård, Markus J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6325765/ https://www.ncbi.nlm.nih.gov/pubmed/30626384 http://dx.doi.org/10.1186/s12934-018-1052-2 |
Ejemplares similares
-
A BioBrick™-Compatible Vector for Allelic Replacement Using the XylE Gene as Selection Marker
por: Casanova, Michela, et al.
Publicado: (2016) -
γ-PGA Hydrolases of Phage Origin in Bacillus subtilis and Other Microbial Genomes
por: Mamberti, Stefania, et al.
Publicado: (2015) -
Cryoprotection of probiotic bacteria with poly-γ-glutamic acid produced by Bacillus subtilis and Bacillus licheniformis
por: Gomaa, Eman Zakaria
Publicado: (2016) -
Improvement of Bacillus subtilis for poly‐γ‐glutamic acid production by genome shuffling
por: Zeng, Wei, et al.
Publicado: (2016) -
The structure of PghL hydrolase bound to its substrate poly‐γ‐glutamate
por: Ramaswamy, Sneha, et al.
Publicado: (2018)