Cargando…
A usability design checklist for Mobile electronic data capturing forms: the validation process
BACKGROUND: New Specific Application Domain (SAD) heuristics or design principles are being developed to guide the design and evaluation of mobile applications in a bid to improve on the usability of these applications. This is because the existing heuristics are rather generic and are often unable...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6325798/ https://www.ncbi.nlm.nih.gov/pubmed/30626390 http://dx.doi.org/10.1186/s12911-018-0718-3 |
_version_ | 1783386191154905088 |
---|---|
author | Mugisha, Alice Nankabirwa, Victoria Tylleskär, Thorkild Babic, Ankica |
author_facet | Mugisha, Alice Nankabirwa, Victoria Tylleskär, Thorkild Babic, Ankica |
author_sort | Mugisha, Alice |
collection | PubMed |
description | BACKGROUND: New Specific Application Domain (SAD) heuristics or design principles are being developed to guide the design and evaluation of mobile applications in a bid to improve on the usability of these applications. This is because the existing heuristics are rather generic and are often unable to reveal a large number of mobile usability issues related to mobile specific interfaces and characteristics. Mobile Electronic Data Capturing Forms (MEDCFs) are one of such applications that are being used to collect health data particularly in hard to reach areas, but with a number of usability challenges especially when used in rural areas by semi literate users. Existing SAD design principles are often not used to evaluate mobile forms because their focus on features specific to data capture is minimal. In addition, some of these lists are extremely long rendering them difficult to use during the design and development of the mobile forms. The main aim of this study therefore was to generate a usability evaluation checklist that can be used to design and evaluate Mobile Electronic Data Capturing Forms in a bid to improve their usability. We also sought to compare the novice and expert developers’ views regarding usability criteria. METHODS: We conducted a literature review in August 2016 using key words on articles and gray literature, and those with a focus on heuristics for mobile applications, user interface designs of mobile devices and web forms were eligible for review. The data bases included the ACM digital library, IEEE-Xplore and Google scholar. We had a total of 242 papers after removing duplicates and a total of 10 articles which met the criteria were finally reviewed. This review resulted in an initial usability evaluation checklist consisting of 125 questions that could be adopted for designing MEDCFs. The questions that handled the five main categories in data capture namely; form content, form layout, input type, error handling and form submission were considered. A validation study was conducted with both novice and expert developers using a validation tool in a bid to refine the checklist which was based on 5 criteria. The criteria for the validation included utility, clarity, question naming, categorization and measurability, with utility and measurability having a higher weight respectively. We then determined the proportion of participants who agreed (scored 4 or 5), disagreed (scored 1 or 2) and were neutral (scored 3) to a given criteria regarding a particular question for each of the experts and novice developers. Finally, we selected questions that had an average of 85% agreement (scored 4 or 5) across all the 5 criteria by both novice and expert developers. ‘Agreement’ stands for capturing the same views or sentiments about the perceived likeness of an evaluation question. RESULTS: The validation study reduced the initial 125 usability evaluation questions to 30 evaluation questions with the form layout category having the majority questions. Results from the validation showed higher levels of affirmativeness from the expert developers compared to those of the novice developers across the different criteria; however the general trend of agreement on relevance of usability questions was similar across all the criteria for the developers. The evaluation questions that were being validated were found to be useful, clear, properly named and categorized, however the measurability of the questions was found not to be satisfactory by both sets of developers. The developers attached great importance to the use of appropriate language and to the visibility of the help function, but in addition expert developers felt that indication of mandatory and optional fields coupled with the use of device information like the Global Positioning System (GPS) was equally important. And for both sets of developers, utility had the highest scores while measurability scored least. CONCLUSION: The generated checklist indicated the design features the software developers found necessary to improve the usability of mobile electronic data collection tools. In the future, we thus propose to test the effectiveness of the measure for suitability and performance based on this generated checklist, and test it on the end users (data collectors) with a purpose of picking their design requirements. Continuous testing with the end users will help refine the checklist to include only that which is most important in improving the data collectors’ experience. |
format | Online Article Text |
id | pubmed-6325798 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-63257982019-01-11 A usability design checklist for Mobile electronic data capturing forms: the validation process Mugisha, Alice Nankabirwa, Victoria Tylleskär, Thorkild Babic, Ankica BMC Med Inform Decis Mak Research Article BACKGROUND: New Specific Application Domain (SAD) heuristics or design principles are being developed to guide the design and evaluation of mobile applications in a bid to improve on the usability of these applications. This is because the existing heuristics are rather generic and are often unable to reveal a large number of mobile usability issues related to mobile specific interfaces and characteristics. Mobile Electronic Data Capturing Forms (MEDCFs) are one of such applications that are being used to collect health data particularly in hard to reach areas, but with a number of usability challenges especially when used in rural areas by semi literate users. Existing SAD design principles are often not used to evaluate mobile forms because their focus on features specific to data capture is minimal. In addition, some of these lists are extremely long rendering them difficult to use during the design and development of the mobile forms. The main aim of this study therefore was to generate a usability evaluation checklist that can be used to design and evaluate Mobile Electronic Data Capturing Forms in a bid to improve their usability. We also sought to compare the novice and expert developers’ views regarding usability criteria. METHODS: We conducted a literature review in August 2016 using key words on articles and gray literature, and those with a focus on heuristics for mobile applications, user interface designs of mobile devices and web forms were eligible for review. The data bases included the ACM digital library, IEEE-Xplore and Google scholar. We had a total of 242 papers after removing duplicates and a total of 10 articles which met the criteria were finally reviewed. This review resulted in an initial usability evaluation checklist consisting of 125 questions that could be adopted for designing MEDCFs. The questions that handled the five main categories in data capture namely; form content, form layout, input type, error handling and form submission were considered. A validation study was conducted with both novice and expert developers using a validation tool in a bid to refine the checklist which was based on 5 criteria. The criteria for the validation included utility, clarity, question naming, categorization and measurability, with utility and measurability having a higher weight respectively. We then determined the proportion of participants who agreed (scored 4 or 5), disagreed (scored 1 or 2) and were neutral (scored 3) to a given criteria regarding a particular question for each of the experts and novice developers. Finally, we selected questions that had an average of 85% agreement (scored 4 or 5) across all the 5 criteria by both novice and expert developers. ‘Agreement’ stands for capturing the same views or sentiments about the perceived likeness of an evaluation question. RESULTS: The validation study reduced the initial 125 usability evaluation questions to 30 evaluation questions with the form layout category having the majority questions. Results from the validation showed higher levels of affirmativeness from the expert developers compared to those of the novice developers across the different criteria; however the general trend of agreement on relevance of usability questions was similar across all the criteria for the developers. The evaluation questions that were being validated were found to be useful, clear, properly named and categorized, however the measurability of the questions was found not to be satisfactory by both sets of developers. The developers attached great importance to the use of appropriate language and to the visibility of the help function, but in addition expert developers felt that indication of mandatory and optional fields coupled with the use of device information like the Global Positioning System (GPS) was equally important. And for both sets of developers, utility had the highest scores while measurability scored least. CONCLUSION: The generated checklist indicated the design features the software developers found necessary to improve the usability of mobile electronic data collection tools. In the future, we thus propose to test the effectiveness of the measure for suitability and performance based on this generated checklist, and test it on the end users (data collectors) with a purpose of picking their design requirements. Continuous testing with the end users will help refine the checklist to include only that which is most important in improving the data collectors’ experience. BioMed Central 2019-01-09 /pmc/articles/PMC6325798/ /pubmed/30626390 http://dx.doi.org/10.1186/s12911-018-0718-3 Text en © The Author(s). 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Mugisha, Alice Nankabirwa, Victoria Tylleskär, Thorkild Babic, Ankica A usability design checklist for Mobile electronic data capturing forms: the validation process |
title | A usability design checklist for Mobile electronic data capturing forms: the validation process |
title_full | A usability design checklist for Mobile electronic data capturing forms: the validation process |
title_fullStr | A usability design checklist for Mobile electronic data capturing forms: the validation process |
title_full_unstemmed | A usability design checklist for Mobile electronic data capturing forms: the validation process |
title_short | A usability design checklist for Mobile electronic data capturing forms: the validation process |
title_sort | usability design checklist for mobile electronic data capturing forms: the validation process |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6325798/ https://www.ncbi.nlm.nih.gov/pubmed/30626390 http://dx.doi.org/10.1186/s12911-018-0718-3 |
work_keys_str_mv | AT mugishaalice ausabilitydesignchecklistformobileelectronicdatacapturingformsthevalidationprocess AT nankabirwavictoria ausabilitydesignchecklistformobileelectronicdatacapturingformsthevalidationprocess AT tylleskarthorkild ausabilitydesignchecklistformobileelectronicdatacapturingformsthevalidationprocess AT babicankica ausabilitydesignchecklistformobileelectronicdatacapturingformsthevalidationprocess AT mugishaalice usabilitydesignchecklistformobileelectronicdatacapturingformsthevalidationprocess AT nankabirwavictoria usabilitydesignchecklistformobileelectronicdatacapturingformsthevalidationprocess AT tylleskarthorkild usabilitydesignchecklistformobileelectronicdatacapturingformsthevalidationprocess AT babicankica usabilitydesignchecklistformobileelectronicdatacapturingformsthevalidationprocess |