Cargando…

Domain Requirements and Genetic Interactions of the Mud1 Subunit of the Saccharomyces cerevisiae U1 snRNP

Mud1 is an inessential 298-amino acid protein subunit of the Saccharomyces cerevisiae U1 snRNP. Mud1 consists of N-terminal and C-terminal RRM domains (RRM1 and RRM2) separated by a linker domain. Synthetic lethal interactions of mud1∆ with deletions of inessential spliceosome components Nam8, Mud2,...

Descripción completa

Detalles Bibliográficos
Autores principales: Agarwal, Radhika, Schwer, Beate, Shuman, Stewart
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Genetics Society of America 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6325900/
https://www.ncbi.nlm.nih.gov/pubmed/30413416
http://dx.doi.org/10.1534/g3.118.200781
Descripción
Sumario:Mud1 is an inessential 298-amino acid protein subunit of the Saccharomyces cerevisiae U1 snRNP. Mud1 consists of N-terminal and C-terminal RRM domains (RRM1 and RRM2) separated by a linker domain. Synthetic lethal interactions of mud1∆ with deletions of inessential spliceosome components Nam8, Mud2, and Msl1, or missense mutations in the branchpoint-binding protein Msl5 enabled us to dissect genetically the domain requirements for Mud1 function. We find that the biological activities of Mud1 can be complemented by co-expressing separately the RRM1 (aa 1-127) and linker-RRM2 (aa 128-298) modules. Whereas RRM1 and RRM2 (aa 197-298) per se are inactive in all tests of functional complementation, the linker-RRM2 by itself partially complements a subset of synthetic lethal mud1∆ interactions. Linker segment aa 155 to 196 contains a nuclear localization signal rich in basic amino acids that is necessary for RRM2 activity in mud1∆ complementation. Alanine scanning mutagenesis indicates that none of the individual RRM1 amino acid contacts to U1 snRNA in the cryo-EM model of the yeast U1 snRNP is necessary for mud1∆ complementation activity.