Cargando…
A comparison of different methods to handle missing data in the context of propensity score analysis
Propensity score analysis is a popular method to control for confounding in observational studies. A challenge in propensity methods is missing values in confounders. Several strategies for handling missing values exist, but guidance in choosing the best method is needed. In this simulation study, w...
Autores principales: | Choi, Jungyeon, Dekkers, Olaf M., le Cessie, Saskia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6325992/ https://www.ncbi.nlm.nih.gov/pubmed/30341708 http://dx.doi.org/10.1007/s10654-018-0447-z |
Ejemplares similares
-
Authors’ Reply: A comparison of different methods to handle missing data in the context of propensity score analysis
por: Choi, Jungyeon, et al.
Publicado: (2019) -
How measurements affected by medication use are reported and handled in observational research: A literature review
por: Choi, Jungyeon, et al.
Publicado: (2022) -
Comparing Methods for Measurement Error Detection in Serial 24-h Hormonal Data
por: van der Spoel, Evie, et al.
Publicado: (2019) -
Strategies for Handling Missing Data in Electronic Health Record Derived Data
por: Wells, Brian J., et al.
Publicado: (2013) -
Survival Bias in Mendelian Randomization Studies: A Threat to Causal Inference
por: Smit, Roelof A. J., et al.
Publicado: (2019)