Cargando…

Probabilistic record linkage of de-identified research datasets with discrepancies using diagnosis codes

We develop an algorithm for probabilistic linkage of de-identified research datasets at the patient level, when only diagnosis codes with discrepancies and no personal health identifiers such as name or date of birth are available. It relies on Bayesian modelling of binarized diagnosis codes, and pr...

Descripción completa

Detalles Bibliográficos
Autores principales: Hejblum, Boris P., Weber, Griffin M., Liao, Katherine P., Palmer, Nathan P., Churchill, Susanne, Shadick, Nancy A., Szolovits, Peter, Murphy, Shawn N., Kohane, Isaac S., Cai, Tianxi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6326114/
https://www.ncbi.nlm.nih.gov/pubmed/30620344
http://dx.doi.org/10.1038/sdata.2018.298
_version_ 1783386245051711488
author Hejblum, Boris P.
Weber, Griffin M.
Liao, Katherine P.
Palmer, Nathan P.
Churchill, Susanne
Shadick, Nancy A.
Szolovits, Peter
Murphy, Shawn N.
Kohane, Isaac S.
Cai, Tianxi
author_facet Hejblum, Boris P.
Weber, Griffin M.
Liao, Katherine P.
Palmer, Nathan P.
Churchill, Susanne
Shadick, Nancy A.
Szolovits, Peter
Murphy, Shawn N.
Kohane, Isaac S.
Cai, Tianxi
author_sort Hejblum, Boris P.
collection PubMed
description We develop an algorithm for probabilistic linkage of de-identified research datasets at the patient level, when only diagnosis codes with discrepancies and no personal health identifiers such as name or date of birth are available. It relies on Bayesian modelling of binarized diagnosis codes, and provides a posterior probability of matching for each patient pair, while considering all the data at once. Both in our simulation study (using an administrative claims dataset for data generation) and in two real use-cases linking patient electronic health records from a large tertiary care network, our method exhibits good performance and compares favourably to the standard baseline Fellegi-Sunter algorithm. We propose a scalable, fast and efficient open-source implementation in the ludic R package available on CRAN, which also includes the anonymized diagnosis code data from our real use-case. This work suggests it is possible to link de-identified research databases stripped of any personal health identifiers using only diagnosis codes, provided sufficient information is shared between the data sources.
format Online
Article
Text
id pubmed-6326114
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-63261142019-01-10 Probabilistic record linkage of de-identified research datasets with discrepancies using diagnosis codes Hejblum, Boris P. Weber, Griffin M. Liao, Katherine P. Palmer, Nathan P. Churchill, Susanne Shadick, Nancy A. Szolovits, Peter Murphy, Shawn N. Kohane, Isaac S. Cai, Tianxi Sci Data Article We develop an algorithm for probabilistic linkage of de-identified research datasets at the patient level, when only diagnosis codes with discrepancies and no personal health identifiers such as name or date of birth are available. It relies on Bayesian modelling of binarized diagnosis codes, and provides a posterior probability of matching for each patient pair, while considering all the data at once. Both in our simulation study (using an administrative claims dataset for data generation) and in two real use-cases linking patient electronic health records from a large tertiary care network, our method exhibits good performance and compares favourably to the standard baseline Fellegi-Sunter algorithm. We propose a scalable, fast and efficient open-source implementation in the ludic R package available on CRAN, which also includes the anonymized diagnosis code data from our real use-case. This work suggests it is possible to link de-identified research databases stripped of any personal health identifiers using only diagnosis codes, provided sufficient information is shared between the data sources. Nature Publishing Group 2019-01-08 /pmc/articles/PMC6326114/ /pubmed/30620344 http://dx.doi.org/10.1038/sdata.2018.298 Text en Copyright © 2019, The Author(s) http://creativecommons.org/licenses/by/4.0/ Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Hejblum, Boris P.
Weber, Griffin M.
Liao, Katherine P.
Palmer, Nathan P.
Churchill, Susanne
Shadick, Nancy A.
Szolovits, Peter
Murphy, Shawn N.
Kohane, Isaac S.
Cai, Tianxi
Probabilistic record linkage of de-identified research datasets with discrepancies using diagnosis codes
title Probabilistic record linkage of de-identified research datasets with discrepancies using diagnosis codes
title_full Probabilistic record linkage of de-identified research datasets with discrepancies using diagnosis codes
title_fullStr Probabilistic record linkage of de-identified research datasets with discrepancies using diagnosis codes
title_full_unstemmed Probabilistic record linkage of de-identified research datasets with discrepancies using diagnosis codes
title_short Probabilistic record linkage of de-identified research datasets with discrepancies using diagnosis codes
title_sort probabilistic record linkage of de-identified research datasets with discrepancies using diagnosis codes
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6326114/
https://www.ncbi.nlm.nih.gov/pubmed/30620344
http://dx.doi.org/10.1038/sdata.2018.298
work_keys_str_mv AT hejblumborisp probabilisticrecordlinkageofdeidentifiedresearchdatasetswithdiscrepanciesusingdiagnosiscodes
AT webergriffinm probabilisticrecordlinkageofdeidentifiedresearchdatasetswithdiscrepanciesusingdiagnosiscodes
AT liaokatherinep probabilisticrecordlinkageofdeidentifiedresearchdatasetswithdiscrepanciesusingdiagnosiscodes
AT palmernathanp probabilisticrecordlinkageofdeidentifiedresearchdatasetswithdiscrepanciesusingdiagnosiscodes
AT churchillsusanne probabilisticrecordlinkageofdeidentifiedresearchdatasetswithdiscrepanciesusingdiagnosiscodes
AT shadicknancya probabilisticrecordlinkageofdeidentifiedresearchdatasetswithdiscrepanciesusingdiagnosiscodes
AT szolovitspeter probabilisticrecordlinkageofdeidentifiedresearchdatasetswithdiscrepanciesusingdiagnosiscodes
AT murphyshawnn probabilisticrecordlinkageofdeidentifiedresearchdatasetswithdiscrepanciesusingdiagnosiscodes
AT kohaneisaacs probabilisticrecordlinkageofdeidentifiedresearchdatasetswithdiscrepanciesusingdiagnosiscodes
AT caitianxi probabilisticrecordlinkageofdeidentifiedresearchdatasetswithdiscrepanciesusingdiagnosiscodes