Cargando…
Probabilistic record linkage of de-identified research datasets with discrepancies using diagnosis codes
We develop an algorithm for probabilistic linkage of de-identified research datasets at the patient level, when only diagnosis codes with discrepancies and no personal health identifiers such as name or date of birth are available. It relies on Bayesian modelling of binarized diagnosis codes, and pr...
Autores principales: | Hejblum, Boris P., Weber, Griffin M., Liao, Katherine P., Palmer, Nathan P., Churchill, Susanne, Shadick, Nancy A., Szolovits, Peter, Murphy, Shawn N., Kohane, Isaac S., Cai, Tianxi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6326114/ https://www.ncbi.nlm.nih.gov/pubmed/30620344 http://dx.doi.org/10.1038/sdata.2018.298 |
Ejemplares similares
-
Development of phenotype algorithms using electronic medical records and incorporating natural language processing
por: Liao, Katherine P, et al.
Publicado: (2015) -
Probabilistic record linkage
por: Sayers, Adrian, et al.
Publicado: (2016) -
Estimating parameters for probabilistic linkage of privacy-preserved datasets
por: Brown, Adrian P., et al.
Publicado: (2017) -
Methods to Develop an Electronic Medical Record Phenotype Algorithm to Compare the Risk of Coronary Artery Disease across 3 Chronic Disease Cohorts
por: Liao, Katherine P., et al.
Publicado: (2015) -
Modeling Disease Severity in Multiple Sclerosis Using Electronic Health Records
por: Xia, Zongqi, et al.
Publicado: (2013)