Cargando…
Segmenting accelerometer data from daily life with unsupervised machine learning
PURPOSE: Accelerometers are increasingly used to obtain valuable descriptors of physical activity for health research. The cut-points approach to segment accelerometer data is widely used in physical activity research but requires resource expensive calibration studies and does not make it easy to e...
Autores principales: | van Kuppevelt, Dafne, Heywood, Joe, Hamer, Mark, Sabia, Séverine, Fitzsimons, Emla, van Hees, Vincent |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6326431/ https://www.ncbi.nlm.nih.gov/pubmed/30625153 http://dx.doi.org/10.1371/journal.pone.0208692 |
Ejemplares similares
-
Measures of fragmentation of rest activity patterns: mathematical properties and interpretability based on accelerometer real life data
por: Danilevicz, Ian Meneghel, et al.
Publicado: (2023) -
Accelerometer assessed moderate-to-vigorous physical activity and successful ageing: results from the Whitehall II study
por: Menai, Mehdi, et al.
Publicado: (2017) -
Physical Activity and Adiposity Markers at Older Ages: Accelerometer Vs Questionnaire Data
por: Sabia, Séverine, et al.
Publicado: (2015) -
Association of physical activity, sedentary behaviour, and daylight exposure with sleep in an ageing population: findings from the Whitehall accelerometer sub-study
por: Le Cornu, Quentin, et al.
Publicado: (2022) -
Association Between Questionnaire- and Accelerometer-Assessed Physical Activity: The Role of Sociodemographic Factors
por: Sabia, Séverine, et al.
Publicado: (2014)