Cargando…
A computational knowledge-base elucidates the response of Staphylococcus aureus to different media types
S. aureus is classified as a serious threat pathogen and is a priority that guides the discovery and development of new antibiotics. Despite growing knowledge of S. aureus metabolic capabilities, our understanding of its systems-level responses to different media types remains incomplete. Here, we d...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6326480/ https://www.ncbi.nlm.nih.gov/pubmed/30625152 http://dx.doi.org/10.1371/journal.pcbi.1006644 |
_version_ | 1783386305796767744 |
---|---|
author | Seif, Yara Monk, Jonathan M. Mih, Nathan Tsunemoto, Hannah Poudel, Saugat Zuniga, Cristal Broddrick, Jared Zengler, Karsten Palsson, Bernhard O. |
author_facet | Seif, Yara Monk, Jonathan M. Mih, Nathan Tsunemoto, Hannah Poudel, Saugat Zuniga, Cristal Broddrick, Jared Zengler, Karsten Palsson, Bernhard O. |
author_sort | Seif, Yara |
collection | PubMed |
description | S. aureus is classified as a serious threat pathogen and is a priority that guides the discovery and development of new antibiotics. Despite growing knowledge of S. aureus metabolic capabilities, our understanding of its systems-level responses to different media types remains incomplete. Here, we develop a manually reconstructed genome-scale model (GEM-PRO) of metabolism with 3D protein structures for S. aureus USA300 str. JE2 containing 854 genes, 1,440 reactions, 1,327 metabolites and 673 3-dimensional protein structures. Computations were in 85% agreement with gene essentiality data from random barcode transposon site sequencing (RB-TnSeq) and 68% agreement with experimental physiological data. Comparisons of computational predictions with experimental observations highlight: 1) cases of non-essential biomass precursors; 2) metabolic genes subject to transcriptional regulation involved in Staphyloxanthin biosynthesis; 3) the essentiality of purine and amino acid biosynthesis in synthetic physiological media; and 4) a switch to aerobic fermentation upon exposure to extracellular glucose elucidated as a result of integrating time-course of quantitative exo-metabolomics data. An up-to-date GEM-PRO thus serves as a knowledge-based platform to elucidate S. aureus’ metabolic response to its environment. |
format | Online Article Text |
id | pubmed-6326480 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-63264802019-01-19 A computational knowledge-base elucidates the response of Staphylococcus aureus to different media types Seif, Yara Monk, Jonathan M. Mih, Nathan Tsunemoto, Hannah Poudel, Saugat Zuniga, Cristal Broddrick, Jared Zengler, Karsten Palsson, Bernhard O. PLoS Comput Biol Research Article S. aureus is classified as a serious threat pathogen and is a priority that guides the discovery and development of new antibiotics. Despite growing knowledge of S. aureus metabolic capabilities, our understanding of its systems-level responses to different media types remains incomplete. Here, we develop a manually reconstructed genome-scale model (GEM-PRO) of metabolism with 3D protein structures for S. aureus USA300 str. JE2 containing 854 genes, 1,440 reactions, 1,327 metabolites and 673 3-dimensional protein structures. Computations were in 85% agreement with gene essentiality data from random barcode transposon site sequencing (RB-TnSeq) and 68% agreement with experimental physiological data. Comparisons of computational predictions with experimental observations highlight: 1) cases of non-essential biomass precursors; 2) metabolic genes subject to transcriptional regulation involved in Staphyloxanthin biosynthesis; 3) the essentiality of purine and amino acid biosynthesis in synthetic physiological media; and 4) a switch to aerobic fermentation upon exposure to extracellular glucose elucidated as a result of integrating time-course of quantitative exo-metabolomics data. An up-to-date GEM-PRO thus serves as a knowledge-based platform to elucidate S. aureus’ metabolic response to its environment. Public Library of Science 2019-01-09 /pmc/articles/PMC6326480/ /pubmed/30625152 http://dx.doi.org/10.1371/journal.pcbi.1006644 Text en © 2019 Seif et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Seif, Yara Monk, Jonathan M. Mih, Nathan Tsunemoto, Hannah Poudel, Saugat Zuniga, Cristal Broddrick, Jared Zengler, Karsten Palsson, Bernhard O. A computational knowledge-base elucidates the response of Staphylococcus aureus to different media types |
title | A computational knowledge-base elucidates the response of Staphylococcus aureus to different media types |
title_full | A computational knowledge-base elucidates the response of Staphylococcus aureus to different media types |
title_fullStr | A computational knowledge-base elucidates the response of Staphylococcus aureus to different media types |
title_full_unstemmed | A computational knowledge-base elucidates the response of Staphylococcus aureus to different media types |
title_short | A computational knowledge-base elucidates the response of Staphylococcus aureus to different media types |
title_sort | computational knowledge-base elucidates the response of staphylococcus aureus to different media types |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6326480/ https://www.ncbi.nlm.nih.gov/pubmed/30625152 http://dx.doi.org/10.1371/journal.pcbi.1006644 |
work_keys_str_mv | AT seifyara acomputationalknowledgebaseelucidatestheresponseofstaphylococcusaureustodifferentmediatypes AT monkjonathanm acomputationalknowledgebaseelucidatestheresponseofstaphylococcusaureustodifferentmediatypes AT mihnathan acomputationalknowledgebaseelucidatestheresponseofstaphylococcusaureustodifferentmediatypes AT tsunemotohannah acomputationalknowledgebaseelucidatestheresponseofstaphylococcusaureustodifferentmediatypes AT poudelsaugat acomputationalknowledgebaseelucidatestheresponseofstaphylococcusaureustodifferentmediatypes AT zunigacristal acomputationalknowledgebaseelucidatestheresponseofstaphylococcusaureustodifferentmediatypes AT broddrickjared acomputationalknowledgebaseelucidatestheresponseofstaphylococcusaureustodifferentmediatypes AT zenglerkarsten acomputationalknowledgebaseelucidatestheresponseofstaphylococcusaureustodifferentmediatypes AT palssonbernhardo acomputationalknowledgebaseelucidatestheresponseofstaphylococcusaureustodifferentmediatypes AT seifyara computationalknowledgebaseelucidatestheresponseofstaphylococcusaureustodifferentmediatypes AT monkjonathanm computationalknowledgebaseelucidatestheresponseofstaphylococcusaureustodifferentmediatypes AT mihnathan computationalknowledgebaseelucidatestheresponseofstaphylococcusaureustodifferentmediatypes AT tsunemotohannah computationalknowledgebaseelucidatestheresponseofstaphylococcusaureustodifferentmediatypes AT poudelsaugat computationalknowledgebaseelucidatestheresponseofstaphylococcusaureustodifferentmediatypes AT zunigacristal computationalknowledgebaseelucidatestheresponseofstaphylococcusaureustodifferentmediatypes AT broddrickjared computationalknowledgebaseelucidatestheresponseofstaphylococcusaureustodifferentmediatypes AT zenglerkarsten computationalknowledgebaseelucidatestheresponseofstaphylococcusaureustodifferentmediatypes AT palssonbernhardo computationalknowledgebaseelucidatestheresponseofstaphylococcusaureustodifferentmediatypes |