Cargando…

A computational knowledge-base elucidates the response of Staphylococcus aureus to different media types

S. aureus is classified as a serious threat pathogen and is a priority that guides the discovery and development of new antibiotics. Despite growing knowledge of S. aureus metabolic capabilities, our understanding of its systems-level responses to different media types remains incomplete. Here, we d...

Descripción completa

Detalles Bibliográficos
Autores principales: Seif, Yara, Monk, Jonathan M., Mih, Nathan, Tsunemoto, Hannah, Poudel, Saugat, Zuniga, Cristal, Broddrick, Jared, Zengler, Karsten, Palsson, Bernhard O.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6326480/
https://www.ncbi.nlm.nih.gov/pubmed/30625152
http://dx.doi.org/10.1371/journal.pcbi.1006644
_version_ 1783386305796767744
author Seif, Yara
Monk, Jonathan M.
Mih, Nathan
Tsunemoto, Hannah
Poudel, Saugat
Zuniga, Cristal
Broddrick, Jared
Zengler, Karsten
Palsson, Bernhard O.
author_facet Seif, Yara
Monk, Jonathan M.
Mih, Nathan
Tsunemoto, Hannah
Poudel, Saugat
Zuniga, Cristal
Broddrick, Jared
Zengler, Karsten
Palsson, Bernhard O.
author_sort Seif, Yara
collection PubMed
description S. aureus is classified as a serious threat pathogen and is a priority that guides the discovery and development of new antibiotics. Despite growing knowledge of S. aureus metabolic capabilities, our understanding of its systems-level responses to different media types remains incomplete. Here, we develop a manually reconstructed genome-scale model (GEM-PRO) of metabolism with 3D protein structures for S. aureus USA300 str. JE2 containing 854 genes, 1,440 reactions, 1,327 metabolites and 673 3-dimensional protein structures. Computations were in 85% agreement with gene essentiality data from random barcode transposon site sequencing (RB-TnSeq) and 68% agreement with experimental physiological data. Comparisons of computational predictions with experimental observations highlight: 1) cases of non-essential biomass precursors; 2) metabolic genes subject to transcriptional regulation involved in Staphyloxanthin biosynthesis; 3) the essentiality of purine and amino acid biosynthesis in synthetic physiological media; and 4) a switch to aerobic fermentation upon exposure to extracellular glucose elucidated as a result of integrating time-course of quantitative exo-metabolomics data. An up-to-date GEM-PRO thus serves as a knowledge-based platform to elucidate S. aureus’ metabolic response to its environment.
format Online
Article
Text
id pubmed-6326480
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-63264802019-01-19 A computational knowledge-base elucidates the response of Staphylococcus aureus to different media types Seif, Yara Monk, Jonathan M. Mih, Nathan Tsunemoto, Hannah Poudel, Saugat Zuniga, Cristal Broddrick, Jared Zengler, Karsten Palsson, Bernhard O. PLoS Comput Biol Research Article S. aureus is classified as a serious threat pathogen and is a priority that guides the discovery and development of new antibiotics. Despite growing knowledge of S. aureus metabolic capabilities, our understanding of its systems-level responses to different media types remains incomplete. Here, we develop a manually reconstructed genome-scale model (GEM-PRO) of metabolism with 3D protein structures for S. aureus USA300 str. JE2 containing 854 genes, 1,440 reactions, 1,327 metabolites and 673 3-dimensional protein structures. Computations were in 85% agreement with gene essentiality data from random barcode transposon site sequencing (RB-TnSeq) and 68% agreement with experimental physiological data. Comparisons of computational predictions with experimental observations highlight: 1) cases of non-essential biomass precursors; 2) metabolic genes subject to transcriptional regulation involved in Staphyloxanthin biosynthesis; 3) the essentiality of purine and amino acid biosynthesis in synthetic physiological media; and 4) a switch to aerobic fermentation upon exposure to extracellular glucose elucidated as a result of integrating time-course of quantitative exo-metabolomics data. An up-to-date GEM-PRO thus serves as a knowledge-based platform to elucidate S. aureus’ metabolic response to its environment. Public Library of Science 2019-01-09 /pmc/articles/PMC6326480/ /pubmed/30625152 http://dx.doi.org/10.1371/journal.pcbi.1006644 Text en © 2019 Seif et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Seif, Yara
Monk, Jonathan M.
Mih, Nathan
Tsunemoto, Hannah
Poudel, Saugat
Zuniga, Cristal
Broddrick, Jared
Zengler, Karsten
Palsson, Bernhard O.
A computational knowledge-base elucidates the response of Staphylococcus aureus to different media types
title A computational knowledge-base elucidates the response of Staphylococcus aureus to different media types
title_full A computational knowledge-base elucidates the response of Staphylococcus aureus to different media types
title_fullStr A computational knowledge-base elucidates the response of Staphylococcus aureus to different media types
title_full_unstemmed A computational knowledge-base elucidates the response of Staphylococcus aureus to different media types
title_short A computational knowledge-base elucidates the response of Staphylococcus aureus to different media types
title_sort computational knowledge-base elucidates the response of staphylococcus aureus to different media types
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6326480/
https://www.ncbi.nlm.nih.gov/pubmed/30625152
http://dx.doi.org/10.1371/journal.pcbi.1006644
work_keys_str_mv AT seifyara acomputationalknowledgebaseelucidatestheresponseofstaphylococcusaureustodifferentmediatypes
AT monkjonathanm acomputationalknowledgebaseelucidatestheresponseofstaphylococcusaureustodifferentmediatypes
AT mihnathan acomputationalknowledgebaseelucidatestheresponseofstaphylococcusaureustodifferentmediatypes
AT tsunemotohannah acomputationalknowledgebaseelucidatestheresponseofstaphylococcusaureustodifferentmediatypes
AT poudelsaugat acomputationalknowledgebaseelucidatestheresponseofstaphylococcusaureustodifferentmediatypes
AT zunigacristal acomputationalknowledgebaseelucidatestheresponseofstaphylococcusaureustodifferentmediatypes
AT broddrickjared acomputationalknowledgebaseelucidatestheresponseofstaphylococcusaureustodifferentmediatypes
AT zenglerkarsten acomputationalknowledgebaseelucidatestheresponseofstaphylococcusaureustodifferentmediatypes
AT palssonbernhardo acomputationalknowledgebaseelucidatestheresponseofstaphylococcusaureustodifferentmediatypes
AT seifyara computationalknowledgebaseelucidatestheresponseofstaphylococcusaureustodifferentmediatypes
AT monkjonathanm computationalknowledgebaseelucidatestheresponseofstaphylococcusaureustodifferentmediatypes
AT mihnathan computationalknowledgebaseelucidatestheresponseofstaphylococcusaureustodifferentmediatypes
AT tsunemotohannah computationalknowledgebaseelucidatestheresponseofstaphylococcusaureustodifferentmediatypes
AT poudelsaugat computationalknowledgebaseelucidatestheresponseofstaphylococcusaureustodifferentmediatypes
AT zunigacristal computationalknowledgebaseelucidatestheresponseofstaphylococcusaureustodifferentmediatypes
AT broddrickjared computationalknowledgebaseelucidatestheresponseofstaphylococcusaureustodifferentmediatypes
AT zenglerkarsten computationalknowledgebaseelucidatestheresponseofstaphylococcusaureustodifferentmediatypes
AT palssonbernhardo computationalknowledgebaseelucidatestheresponseofstaphylococcusaureustodifferentmediatypes