Cargando…
Artificial intelligence to predict needs for urgent revascularization from 12-leads electrocardiography in emergency patients
BACKGROUND: Patient with acute coronary syndrome benefits from early revascularization. However, methods for the selection of patients who require urgent revascularization from a variety of patients visiting the emergency room with chest symptoms is not fully established. Electrocardiogram is an eas...
Autores principales: | Goto, Shinichi, Kimura, Mai, Katsumata, Yoshinori, Goto, Shinya, Kamatani, Takashi, Ichihara, Genki, Ko, Seien, Sasaki, Junichi, Fukuda, Keiichi, Sano, Motoaki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6326503/ https://www.ncbi.nlm.nih.gov/pubmed/30625197 http://dx.doi.org/10.1371/journal.pone.0210103 |
Ejemplares similares
-
MerTK Expression and ERK Activation Are Essential for the Functional Maturation of Osteopontin‐Producing Reparative Macrophages After Myocardial Infarction
por: Shirakawa, Kohsuke, et al.
Publicado: (2020) -
Improved prediction of sudden cardiac death in patients with heart failure through digital processing of electrocardiography
por: Shiraishi, Yasuyuki, et al.
Publicado: (2023) -
Feasibility of the deep learning method for estimating the ventilatory threshold with electrocardiography data
por: Miura, Kotaro, et al.
Publicado: (2020) -
Pharmacokinetics of hydrogen after ingesting a hydrogen-rich solution: A study in pigs
por: Ichihara, Genki, et al.
Publicado: (2021) -
Deep learning-based model detects atrial septal defects from electrocardiography: a cross-sectional multicenter hospital-based study
por: Miura, Kotaro, et al.
Publicado: (2023)