Cargando…
Graph theory approaches to functional network organization in brain disorders: A critique for a brave new small-world
Over the past two decades, resting-state functional connectivity (RSFC) methods have provided new insights into the network organization of the human brain. Studies of brain disorders such as Alzheimer’s disease or depression have adapted tools from graph theory to characterize differences between h...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MIT Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6326733/ https://www.ncbi.nlm.nih.gov/pubmed/30793071 http://dx.doi.org/10.1162/netn_a_00054 |
_version_ | 1783386355469910016 |
---|---|
author | Hallquist, Michael N. Hillary, Frank G. |
author_facet | Hallquist, Michael N. Hillary, Frank G. |
author_sort | Hallquist, Michael N. |
collection | PubMed |
description | Over the past two decades, resting-state functional connectivity (RSFC) methods have provided new insights into the network organization of the human brain. Studies of brain disorders such as Alzheimer’s disease or depression have adapted tools from graph theory to characterize differences between healthy and patient populations. Here, we conducted a review of clinical network neuroscience, summarizing methodological details from 106 RSFC studies. Although this approach is prevalent and promising, our review identified four challenges. First, the composition of networks varied remarkably in terms of region parcellation and edge definition, which are fundamental to graph analyses. Second, many studies equated the number of connections across graphs, but this is conceptually problematic in clinical populations and may induce spurious group differences. Third, few graph metrics were reported in common, precluding meta-analyses. Fourth, some studies tested hypotheses at one level of the graph without a clear neurobiological rationale or considering how findings at one level (e.g., global topology) are contextualized by another (e.g., modular structure). Based on these themes, we conducted network simulations to demonstrate the impact of specific methodological decisions on case-control comparisons. Finally, we offer suggestions for promoting convergence across clinical studies in order to facilitate progress in this important field. |
format | Online Article Text |
id | pubmed-6326733 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MIT Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-63267332019-02-21 Graph theory approaches to functional network organization in brain disorders: A critique for a brave new small-world Hallquist, Michael N. Hillary, Frank G. Netw Neurosci Review Article Over the past two decades, resting-state functional connectivity (RSFC) methods have provided new insights into the network organization of the human brain. Studies of brain disorders such as Alzheimer’s disease or depression have adapted tools from graph theory to characterize differences between healthy and patient populations. Here, we conducted a review of clinical network neuroscience, summarizing methodological details from 106 RSFC studies. Although this approach is prevalent and promising, our review identified four challenges. First, the composition of networks varied remarkably in terms of region parcellation and edge definition, which are fundamental to graph analyses. Second, many studies equated the number of connections across graphs, but this is conceptually problematic in clinical populations and may induce spurious group differences. Third, few graph metrics were reported in common, precluding meta-analyses. Fourth, some studies tested hypotheses at one level of the graph without a clear neurobiological rationale or considering how findings at one level (e.g., global topology) are contextualized by another (e.g., modular structure). Based on these themes, we conducted network simulations to demonstrate the impact of specific methodological decisions on case-control comparisons. Finally, we offer suggestions for promoting convergence across clinical studies in order to facilitate progress in this important field. MIT Press 2018-10-01 /pmc/articles/PMC6326733/ /pubmed/30793071 http://dx.doi.org/10.1162/netn_a_00054 Text en © 2018 Massachusetts Institute of Technology This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. For a full description of the license, please visit https://creativecommons.org/licenses/by/4.0/legalcode. |
spellingShingle | Review Article Hallquist, Michael N. Hillary, Frank G. Graph theory approaches to functional network organization in brain disorders: A critique for a brave new small-world |
title | Graph theory approaches to functional network organization in brain disorders: A critique for a brave new small-world |
title_full | Graph theory approaches to functional network organization in brain disorders: A critique for a brave new small-world |
title_fullStr | Graph theory approaches to functional network organization in brain disorders: A critique for a brave new small-world |
title_full_unstemmed | Graph theory approaches to functional network organization in brain disorders: A critique for a brave new small-world |
title_short | Graph theory approaches to functional network organization in brain disorders: A critique for a brave new small-world |
title_sort | graph theory approaches to functional network organization in brain disorders: a critique for a brave new small-world |
topic | Review Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6326733/ https://www.ncbi.nlm.nih.gov/pubmed/30793071 http://dx.doi.org/10.1162/netn_a_00054 |
work_keys_str_mv | AT hallquistmichaeln graphtheoryapproachestofunctionalnetworkorganizationinbraindisordersacritiqueforabravenewsmallworld AT hillaryfrankg graphtheoryapproachestofunctionalnetworkorganizationinbraindisordersacritiqueforabravenewsmallworld |