Cargando…
The Chronic Effects of Copper and Cadmium on Life History Traits Across Cladocera Species: A Meta-analysis
The effect of sublethal concentrations of heavy metals on cladoceran growth and reproduction is a cornerstone of modern ecotoxicology. However, the literature contains assays across numerous concentrations, on numerous species and genotypes, and conditions are far from consistent. We undertook a sys...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6326991/ https://www.ncbi.nlm.nih.gov/pubmed/30178132 http://dx.doi.org/10.1007/s00244-018-0555-5 |
Sumario: | The effect of sublethal concentrations of heavy metals on cladoceran growth and reproduction is a cornerstone of modern ecotoxicology. However, the literature contains assays across numerous concentrations, on numerous species and genotypes, and conditions are far from consistent. We undertook a systematic review of the sublethal effects of copper and cadmium concentrations on Cladocera spp. life history (reproduction, maturation age, and somatic growth rate). Using meta-analysis, we tested the hypothesis that the effects of increasing Cu and Cd concentrations on traits may vary by species. We also evaluated where possible whether the effect of metal concentrations on traits vary by water hardness, exposure duration, or whether the metals were delivered in aqueous solution or via food. We surveyed > 200 papers, resulting in a set of 32 experimental studies representing 446 trials where the results were presented compared with Daphnia magna—the most commonly assayed species. We found qualitatively similar effects of Cu and Cd on life history traits that included reduction in reproduction and somatic growth rate and delay of maturation. Cladocera species showed marked variations in their susceptibility to metals, and D. magna was found to be the least sensitive species to sublethal changes in reproduction. The effects were largely consistent for aqueous vs. dietary food. Water hardness, where data were available, had no detectable effect. Available data indicate that exposure duration had no effect on the toxicity of Cu but did for D. magna reproductive response to Cd. Our study highlights the importance of including species identity when considering toxicological testing and regulation development. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s00244-018-0555-5) contains supplementary material, which is available to authorized users. |
---|