Cargando…
A classification framework for exploiting sparse multi-variate temporal features with application to adverse drug event detection in medical records
BACKGROUND: Adverse drug events (ADEs) as well as other preventable adverse events in the hospital setting incur a yearly monetary cost of approximately $3.5 billion, in the United States alone. Therefore, it is of paramount importance to reduce the impact and prevalence of ADEs within the healthcar...
Autores principales: | Bagattini, Francesco, Karlsson, Isak, Rebane, Jonathan, Papapetrou, Panagiotis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6327495/ https://www.ncbi.nlm.nih.gov/pubmed/30630486 http://dx.doi.org/10.1186/s12911-018-0717-4 |
Ejemplares similares
-
Exploiting sparseness in de novo genome assembly
por: Ye, Chengxi, et al.
Publicado: (2012) -
Using Temporal Patterns in Medical Records to Discern Adverse Drug Events from Indications
por: Liu, Yi, et al.
Publicado: (2012) -
Spatial and temporal genetic variation in an exploited reef fish: The effects of exploitation on cohort genetic structure
por: Taboun, Zahra S., et al.
Publicado: (2021) -
Exploiting ontology graph for predicting sparsely annotated gene function
por: Wang, Sheng, et al.
Publicado: (2015) -
Sparse Convolutional Neural Networks for particle classification in ProtoDUNE-SP events
por: Abed Abud, Adam
Publicado: (2023)