Cargando…
Selenium-Rich Diet Induces Myocardial Structural and Functional Abnormalities by Activating Caspase-9 and Caspase-3 in Gpx-1P198L-Overexpression Transgenic Mice
BACKGROUND: Selenium (Se) deficiency and supplementation result in multiple effects. GPx-1 (Pro198Leu) polymorphism is associated with Se deficiency. This study aimed to observe associations between Se-deficiency/supplement and GPx-1-198Leu overexpression in myocardial injuries. MATERIAL/METHODS: GP...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Scientific Literature, Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6327778/ https://www.ncbi.nlm.nih.gov/pubmed/30602716 http://dx.doi.org/10.12659/MSM.911120 |
Sumario: | BACKGROUND: Selenium (Se) deficiency and supplementation result in multiple effects. GPx-1 (Pro198Leu) polymorphism is associated with Se deficiency. This study aimed to observe associations between Se-deficiency/supplement and GPx-1-198Leu overexpression in myocardial injuries. MATERIAL/METHODS: GPx-1P198L transgenic (Tg) mice and non-transgenic wild-type (WT) littermates were divided into Control (CON, 0.1–0.2 mg/kg), Se-deficiency (SD, <0.02 mg/kg), and Se-supplement (SS, 0.4 mg/kg) groups. Cardiac functions were observed with animal M-mode echocardiography. Se level was measured using 2,3-diamino Kenai fluorospectrophotometry. Total cardiac GPx activity was also measured. Myocardial histopathology was determined with HE and Masson’s trichrome staining. Caspase-9 and caspase-3 were measured with Western blot analysis. RESULTS: In WT Se-deficient mice, cardiac GPx activity was significantly decreased, and was not elevated by overexpression of GPx-1-198Leu gene. Increased GPx activity was observed in WT Se-supplemented mice and Tg Se-supplemented mice (much more). Se deficiency as well as supplementation resulted in cardiac systolic dysfunction, which was not affected by GPx-1-198Leu gene. Se deficiency led to myocardial fibrosis and pathological changes accompanied by increased activation of caspase-9 and caspase-3. Se supplementation significantly reduced pathological changes, as well as caspase-9 and caspase-3 levels in the presence of increased myocardial fibrosis. In Se-deficient mice, GPx-1-198Leu overexpression did not significantly decrease myocardial pathological injuries and fibrosis. In Se-supplemented Tg mice, myocardial fibrosis and caspase-9 level were increased, although pathological injuries and caspase-3 were similar to that in Se-supplemented WT mice. CONCLUSIONS: Se deficiency as well as supplementation induced myocardial structural and functional abnormalities through activation of caspase-9 and caspase-3 in GPx-1P198L overexpression transgenic mice. |
---|