Cargando…
Dissolving uptake-hindering surface defects in metal–organic frameworks
Metal–organic frameworks (MOFs) have unique properties which make them perfectly suited for various adsorption and separation applications; however, their uses and efficiencies are often hindered by their limited stability. When most MOFs are exposed to water or humid air, the MOF structure, in part...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6328000/ https://www.ncbi.nlm.nih.gov/pubmed/30713626 http://dx.doi.org/10.1039/c8sc03735c |
_version_ | 1783386579945914368 |
---|---|
author | Müller, Kai Vankova, Nina Schöttner, Ludger Heine, Thomas Heinke, Lars |
author_facet | Müller, Kai Vankova, Nina Schöttner, Ludger Heine, Thomas Heinke, Lars |
author_sort | Müller, Kai |
collection | PubMed |
description | Metal–organic frameworks (MOFs) have unique properties which make them perfectly suited for various adsorption and separation applications; however, their uses and efficiencies are often hindered by their limited stability. When most MOFs are exposed to water or humid air, the MOF structure, in particular at the surface, is destroyed, creating surface defects. These surface defects are surface barriers which tremendously hinder the uptake and release of guest molecules and, thus, massively decrease the performance in any application of MOFs. Here, the destruction by exposure to water vapor is investigated by using well-defined MOF films of type HKUST-1 as a model system for uptake experiments with different-sized probe molecules as well as for spectroscopic investigations, complemented by density functional theory calculations of the defect structure. In addition to the characterization of the surface defects, it is found that the pristine MOF structure can be regenerated. We show that the surface defects can be dissolved by exposure to the synthesis solvent, here ethanol, enabling fast uptake and release of guest molecules. These findings show that the storage of MOF materials in a synthesis solvent results in healing of surface defects and enables ideal performance of MOF materials. |
format | Online Article Text |
id | pubmed-6328000 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-63280002019-02-01 Dissolving uptake-hindering surface defects in metal–organic frameworks Müller, Kai Vankova, Nina Schöttner, Ludger Heine, Thomas Heinke, Lars Chem Sci Chemistry Metal–organic frameworks (MOFs) have unique properties which make them perfectly suited for various adsorption and separation applications; however, their uses and efficiencies are often hindered by their limited stability. When most MOFs are exposed to water or humid air, the MOF structure, in particular at the surface, is destroyed, creating surface defects. These surface defects are surface barriers which tremendously hinder the uptake and release of guest molecules and, thus, massively decrease the performance in any application of MOFs. Here, the destruction by exposure to water vapor is investigated by using well-defined MOF films of type HKUST-1 as a model system for uptake experiments with different-sized probe molecules as well as for spectroscopic investigations, complemented by density functional theory calculations of the defect structure. In addition to the characterization of the surface defects, it is found that the pristine MOF structure can be regenerated. We show that the surface defects can be dissolved by exposure to the synthesis solvent, here ethanol, enabling fast uptake and release of guest molecules. These findings show that the storage of MOF materials in a synthesis solvent results in healing of surface defects and enables ideal performance of MOF materials. Royal Society of Chemistry 2018-10-10 /pmc/articles/PMC6328000/ /pubmed/30713626 http://dx.doi.org/10.1039/c8sc03735c Text en This journal is © The Royal Society of Chemistry 2019 http://creativecommons.org/licenses/by-nc/3.0/ This article is freely available. This article is licensed under a Creative Commons Attribution Non Commercial 3.0 Unported Licence (CC BY-NC 3.0) |
spellingShingle | Chemistry Müller, Kai Vankova, Nina Schöttner, Ludger Heine, Thomas Heinke, Lars Dissolving uptake-hindering surface defects in metal–organic frameworks |
title | Dissolving uptake-hindering surface defects in metal–organic frameworks
|
title_full | Dissolving uptake-hindering surface defects in metal–organic frameworks
|
title_fullStr | Dissolving uptake-hindering surface defects in metal–organic frameworks
|
title_full_unstemmed | Dissolving uptake-hindering surface defects in metal–organic frameworks
|
title_short | Dissolving uptake-hindering surface defects in metal–organic frameworks
|
title_sort | dissolving uptake-hindering surface defects in metal–organic frameworks |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6328000/ https://www.ncbi.nlm.nih.gov/pubmed/30713626 http://dx.doi.org/10.1039/c8sc03735c |
work_keys_str_mv | AT mullerkai dissolvinguptakehinderingsurfacedefectsinmetalorganicframeworks AT vankovanina dissolvinguptakehinderingsurfacedefectsinmetalorganicframeworks AT schottnerludger dissolvinguptakehinderingsurfacedefectsinmetalorganicframeworks AT heinethomas dissolvinguptakehinderingsurfacedefectsinmetalorganicframeworks AT heinkelars dissolvinguptakehinderingsurfacedefectsinmetalorganicframeworks |