Cargando…

A rapid method for post-antibiotic bacterial susceptibility testing

Antibiotic susceptibility testing is often performed to determine the most effective antibiotic treatment for a bacterial infection, or perhaps to determine if a particular strain of bacteria is becoming drug resistant. Such tests, and others used to determine efficacy of candidate antibiotics durin...

Descripción completa

Detalles Bibliográficos
Autores principales: Heller, Andrew A., Spence, Dana M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6328127/
https://www.ncbi.nlm.nih.gov/pubmed/30629681
http://dx.doi.org/10.1371/journal.pone.0210534
_version_ 1783386596927602688
author Heller, Andrew A.
Spence, Dana M.
author_facet Heller, Andrew A.
Spence, Dana M.
author_sort Heller, Andrew A.
collection PubMed
description Antibiotic susceptibility testing is often performed to determine the most effective antibiotic treatment for a bacterial infection, or perhaps to determine if a particular strain of bacteria is becoming drug resistant. Such tests, and others used to determine efficacy of candidate antibiotics during the drug discovery process, have resulted in a demand for more rapid susceptibility testing methods. Here, we have developed a susceptibility test that utilizes chemiluminescent determination of ATP release from bacteria and the overall optical density (OD600) of the bacterial solution. Bacteria release ATP during a growth phase or when they are lysed in the presence of an effective antibiotic. Because optical density increases during growth phase, but does not change during bacterial lysing, an increase in the ATP:optical density ratio after the bacteria have reached the log phase of growth (which is steady) would indicate antibiotic efficacy. Specifically, after allowing a kanamycin-resistant strain of Escherichia coli (E.coli) to pass through the growth phase and reach steady state, the addition of levofloxacin, an antibiotic to which E. coli is susceptible, resulted in a significant increase in the ATP:OD600 ratio in comparison to the use of kanamycin alone (1.80 +/- 0.50 vs. 1.12 +/- 0.28). This difference could be measured 20 minutes after the addition of the antibiotic, to which the bacteria are susceptible, to the bacterial sample. Furthermore, this method also proved useful with gram positive bacteria, as the addition of kanamycin to a chloramphenicol-resistant strain of Bacillus subtilis (B. subtilis) resulted in an ATP:OD600 ratio of 2.14 +/- 0.26 in comparison to 0.62 +/- 0.05 for bacteria not subjected to the antibiotic to which the bacteria are susceptible. Collectively, these results suggest that measurement of the ATP:OD600 ratio may provide a susceptibility test for antibiotic efficacy that is more rapid and quantitative than currently accepted techniques.
format Online
Article
Text
id pubmed-6328127
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-63281272019-02-01 A rapid method for post-antibiotic bacterial susceptibility testing Heller, Andrew A. Spence, Dana M. PLoS One Research Article Antibiotic susceptibility testing is often performed to determine the most effective antibiotic treatment for a bacterial infection, or perhaps to determine if a particular strain of bacteria is becoming drug resistant. Such tests, and others used to determine efficacy of candidate antibiotics during the drug discovery process, have resulted in a demand for more rapid susceptibility testing methods. Here, we have developed a susceptibility test that utilizes chemiluminescent determination of ATP release from bacteria and the overall optical density (OD600) of the bacterial solution. Bacteria release ATP during a growth phase or when they are lysed in the presence of an effective antibiotic. Because optical density increases during growth phase, but does not change during bacterial lysing, an increase in the ATP:optical density ratio after the bacteria have reached the log phase of growth (which is steady) would indicate antibiotic efficacy. Specifically, after allowing a kanamycin-resistant strain of Escherichia coli (E.coli) to pass through the growth phase and reach steady state, the addition of levofloxacin, an antibiotic to which E. coli is susceptible, resulted in a significant increase in the ATP:OD600 ratio in comparison to the use of kanamycin alone (1.80 +/- 0.50 vs. 1.12 +/- 0.28). This difference could be measured 20 minutes after the addition of the antibiotic, to which the bacteria are susceptible, to the bacterial sample. Furthermore, this method also proved useful with gram positive bacteria, as the addition of kanamycin to a chloramphenicol-resistant strain of Bacillus subtilis (B. subtilis) resulted in an ATP:OD600 ratio of 2.14 +/- 0.26 in comparison to 0.62 +/- 0.05 for bacteria not subjected to the antibiotic to which the bacteria are susceptible. Collectively, these results suggest that measurement of the ATP:OD600 ratio may provide a susceptibility test for antibiotic efficacy that is more rapid and quantitative than currently accepted techniques. Public Library of Science 2019-01-10 /pmc/articles/PMC6328127/ /pubmed/30629681 http://dx.doi.org/10.1371/journal.pone.0210534 Text en © 2019 Heller, Spence http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Heller, Andrew A.
Spence, Dana M.
A rapid method for post-antibiotic bacterial susceptibility testing
title A rapid method for post-antibiotic bacterial susceptibility testing
title_full A rapid method for post-antibiotic bacterial susceptibility testing
title_fullStr A rapid method for post-antibiotic bacterial susceptibility testing
title_full_unstemmed A rapid method for post-antibiotic bacterial susceptibility testing
title_short A rapid method for post-antibiotic bacterial susceptibility testing
title_sort rapid method for post-antibiotic bacterial susceptibility testing
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6328127/
https://www.ncbi.nlm.nih.gov/pubmed/30629681
http://dx.doi.org/10.1371/journal.pone.0210534
work_keys_str_mv AT hellerandrewa arapidmethodforpostantibioticbacterialsusceptibilitytesting
AT spencedanam arapidmethodforpostantibioticbacterialsusceptibilitytesting
AT hellerandrewa rapidmethodforpostantibioticbacterialsusceptibilitytesting
AT spencedanam rapidmethodforpostantibioticbacterialsusceptibilitytesting