Cargando…
Site-specific HNK-1 epitope on alternatively spliced fibronectin type-III repeats in tenascin-C promotes neurite outgrowth of hippocampal neurons through contactin-1
The human natural killer-1 (HNK-1) carbohydrate epitope, composed of a unique sulfated trisaccharide (HSO(3)–3GlcAβ1–3Galβ1–4GlcNAc-R), is highly expressed during brain development and regulates higher brain function. However, it remains unclear which glycoprotein carries the HNK-1 epitope in the em...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6328190/ https://www.ncbi.nlm.nih.gov/pubmed/30629639 http://dx.doi.org/10.1371/journal.pone.0210193 |
_version_ | 1783386611846742016 |
---|---|
author | Nakamura, Ayasa Morise, Jyoji Yabuno-Nakagawa, Keiko Hashimoto, Yuki Takematsu, Hiromu Oka, Shogo |
author_facet | Nakamura, Ayasa Morise, Jyoji Yabuno-Nakagawa, Keiko Hashimoto, Yuki Takematsu, Hiromu Oka, Shogo |
author_sort | Nakamura, Ayasa |
collection | PubMed |
description | The human natural killer-1 (HNK-1) carbohydrate epitope, composed of a unique sulfated trisaccharide (HSO(3)–3GlcAβ1–3Galβ1–4GlcNAc-R), is highly expressed during brain development and regulates higher brain function. However, it remains unclear which glycoprotein carries the HNK-1 epitope in the embryonic brain and the functional role it plays. Here, we showed that one of the major HNK-1 carrier proteins in the embryonic brain is tenascin-C (TNC), an extracellular matrix protein that regulates neurite outgrowth by interacting with the GPI-anchored protein contactin-1 (CNTN). Because the alternatively spliced fibronectin type-III (FNIII) repeats in TNC give rise to many isoforms and affect neuronal function, we evaluated neurite outgrowth of primary hippocampal neurons on purified recombinant FNIII repeats with or without the HNK-1 epitope as a substrate. We found that the presence of the HNK-1 epitope on the C domain of TNC promoted neurite outgrowth, and that this signal was mediated by CNTN, which is an HNK-1-expressing neuronal receptor. The neurite-promoting activity of the HNK-1 epitope on TNC required neuronal HNK-1 expression, which was defective in neurons lacking the glucuronyltransferases GlcAT-P and GlcAT-S. These results suggest that the HNK-1 epitope is a key modifier of TNC and CNTN in the regulation of embryonic brain development. |
format | Online Article Text |
id | pubmed-6328190 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-63281902019-02-01 Site-specific HNK-1 epitope on alternatively spliced fibronectin type-III repeats in tenascin-C promotes neurite outgrowth of hippocampal neurons through contactin-1 Nakamura, Ayasa Morise, Jyoji Yabuno-Nakagawa, Keiko Hashimoto, Yuki Takematsu, Hiromu Oka, Shogo PLoS One Research Article The human natural killer-1 (HNK-1) carbohydrate epitope, composed of a unique sulfated trisaccharide (HSO(3)–3GlcAβ1–3Galβ1–4GlcNAc-R), is highly expressed during brain development and regulates higher brain function. However, it remains unclear which glycoprotein carries the HNK-1 epitope in the embryonic brain and the functional role it plays. Here, we showed that one of the major HNK-1 carrier proteins in the embryonic brain is tenascin-C (TNC), an extracellular matrix protein that regulates neurite outgrowth by interacting with the GPI-anchored protein contactin-1 (CNTN). Because the alternatively spliced fibronectin type-III (FNIII) repeats in TNC give rise to many isoforms and affect neuronal function, we evaluated neurite outgrowth of primary hippocampal neurons on purified recombinant FNIII repeats with or without the HNK-1 epitope as a substrate. We found that the presence of the HNK-1 epitope on the C domain of TNC promoted neurite outgrowth, and that this signal was mediated by CNTN, which is an HNK-1-expressing neuronal receptor. The neurite-promoting activity of the HNK-1 epitope on TNC required neuronal HNK-1 expression, which was defective in neurons lacking the glucuronyltransferases GlcAT-P and GlcAT-S. These results suggest that the HNK-1 epitope is a key modifier of TNC and CNTN in the regulation of embryonic brain development. Public Library of Science 2019-01-10 /pmc/articles/PMC6328190/ /pubmed/30629639 http://dx.doi.org/10.1371/journal.pone.0210193 Text en © 2019 Nakamura et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Nakamura, Ayasa Morise, Jyoji Yabuno-Nakagawa, Keiko Hashimoto, Yuki Takematsu, Hiromu Oka, Shogo Site-specific HNK-1 epitope on alternatively spliced fibronectin type-III repeats in tenascin-C promotes neurite outgrowth of hippocampal neurons through contactin-1 |
title | Site-specific HNK-1 epitope on alternatively spliced fibronectin type-III repeats in tenascin-C promotes neurite outgrowth of hippocampal neurons through contactin-1 |
title_full | Site-specific HNK-1 epitope on alternatively spliced fibronectin type-III repeats in tenascin-C promotes neurite outgrowth of hippocampal neurons through contactin-1 |
title_fullStr | Site-specific HNK-1 epitope on alternatively spliced fibronectin type-III repeats in tenascin-C promotes neurite outgrowth of hippocampal neurons through contactin-1 |
title_full_unstemmed | Site-specific HNK-1 epitope on alternatively spliced fibronectin type-III repeats in tenascin-C promotes neurite outgrowth of hippocampal neurons through contactin-1 |
title_short | Site-specific HNK-1 epitope on alternatively spliced fibronectin type-III repeats in tenascin-C promotes neurite outgrowth of hippocampal neurons through contactin-1 |
title_sort | site-specific hnk-1 epitope on alternatively spliced fibronectin type-iii repeats in tenascin-c promotes neurite outgrowth of hippocampal neurons through contactin-1 |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6328190/ https://www.ncbi.nlm.nih.gov/pubmed/30629639 http://dx.doi.org/10.1371/journal.pone.0210193 |
work_keys_str_mv | AT nakamuraayasa sitespecifichnk1epitopeonalternativelysplicedfibronectintypeiiirepeatsintenascincpromotesneuriteoutgrowthofhippocampalneuronsthroughcontactin1 AT morisejyoji sitespecifichnk1epitopeonalternativelysplicedfibronectintypeiiirepeatsintenascincpromotesneuriteoutgrowthofhippocampalneuronsthroughcontactin1 AT yabunonakagawakeiko sitespecifichnk1epitopeonalternativelysplicedfibronectintypeiiirepeatsintenascincpromotesneuriteoutgrowthofhippocampalneuronsthroughcontactin1 AT hashimotoyuki sitespecifichnk1epitopeonalternativelysplicedfibronectintypeiiirepeatsintenascincpromotesneuriteoutgrowthofhippocampalneuronsthroughcontactin1 AT takematsuhiromu sitespecifichnk1epitopeonalternativelysplicedfibronectintypeiiirepeatsintenascincpromotesneuriteoutgrowthofhippocampalneuronsthroughcontactin1 AT okashogo sitespecifichnk1epitopeonalternativelysplicedfibronectintypeiiirepeatsintenascincpromotesneuriteoutgrowthofhippocampalneuronsthroughcontactin1 |