Cargando…

Thermal stress induces glycolytic beige fat formation via a myogenic state

Environmental cues profoundly affect cellular plasticity in multicellular organisms. For instance, exercise promotes a glycolytic-to-oxidative fiber-type switch in skeletal muscle, and cold acclimation induces beige adipocyte biogenesis in adipose tissue. However, the molecular mechanisms by which p...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Yong, Ikeda, Kenji, Yoneshiro, Takeshi, Scaramozza, Annarita, Tajima, Kazuki, Wang, Qiang, Kim, Kyeongkyu, Shinoda, Kosaku, Sponton, Carlos Henrique, Brown, Zachary, Brack, Andrew, Kajimura, Shingo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6328316/
https://www.ncbi.nlm.nih.gov/pubmed/30568302
http://dx.doi.org/10.1038/s41586-018-0801-z
_version_ 1783386631423655936
author Chen, Yong
Ikeda, Kenji
Yoneshiro, Takeshi
Scaramozza, Annarita
Tajima, Kazuki
Wang, Qiang
Kim, Kyeongkyu
Shinoda, Kosaku
Sponton, Carlos Henrique
Brown, Zachary
Brack, Andrew
Kajimura, Shingo
author_facet Chen, Yong
Ikeda, Kenji
Yoneshiro, Takeshi
Scaramozza, Annarita
Tajima, Kazuki
Wang, Qiang
Kim, Kyeongkyu
Shinoda, Kosaku
Sponton, Carlos Henrique
Brown, Zachary
Brack, Andrew
Kajimura, Shingo
author_sort Chen, Yong
collection PubMed
description Environmental cues profoundly affect cellular plasticity in multicellular organisms. For instance, exercise promotes a glycolytic-to-oxidative fiber-type switch in skeletal muscle, and cold acclimation induces beige adipocyte biogenesis in adipose tissue. However, the molecular mechanisms by which physiological or pathological cues evokes developmental plasticity remain insufficiently understood. Here, we report a previously uncharacterized form of beige adipocytes that play a critical role in cold adaptation in the absence of β-adrenergic receptor (β-AR) signaling. This unique beige fat possesses distinct characteristics from the conventional beige fat in their developmental origin, regulation, and enhanced glucose oxidation; hence, we refer to them as glycolytic beige fat (g-beige). Mechanistically, we identify GA-binding protein alpha (GABPα) that controls g-beige adipocyte differentiation through a myogenic intermediate. Our study uncovers a non-canonical adaptive mechanism by which thermal stress induces progenitor cell plasticity and recruits a distinct form of thermogenic cells required for energy homeostasis and survival.
format Online
Article
Text
id pubmed-6328316
institution National Center for Biotechnology Information
language English
publishDate 2018
record_format MEDLINE/PubMed
spelling pubmed-63283162019-06-19 Thermal stress induces glycolytic beige fat formation via a myogenic state Chen, Yong Ikeda, Kenji Yoneshiro, Takeshi Scaramozza, Annarita Tajima, Kazuki Wang, Qiang Kim, Kyeongkyu Shinoda, Kosaku Sponton, Carlos Henrique Brown, Zachary Brack, Andrew Kajimura, Shingo Nature Article Environmental cues profoundly affect cellular plasticity in multicellular organisms. For instance, exercise promotes a glycolytic-to-oxidative fiber-type switch in skeletal muscle, and cold acclimation induces beige adipocyte biogenesis in adipose tissue. However, the molecular mechanisms by which physiological or pathological cues evokes developmental plasticity remain insufficiently understood. Here, we report a previously uncharacterized form of beige adipocytes that play a critical role in cold adaptation in the absence of β-adrenergic receptor (β-AR) signaling. This unique beige fat possesses distinct characteristics from the conventional beige fat in their developmental origin, regulation, and enhanced glucose oxidation; hence, we refer to them as glycolytic beige fat (g-beige). Mechanistically, we identify GA-binding protein alpha (GABPα) that controls g-beige adipocyte differentiation through a myogenic intermediate. Our study uncovers a non-canonical adaptive mechanism by which thermal stress induces progenitor cell plasticity and recruits a distinct form of thermogenic cells required for energy homeostasis and survival. 2018-12-19 2019-01 /pmc/articles/PMC6328316/ /pubmed/30568302 http://dx.doi.org/10.1038/s41586-018-0801-z Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms Reprints and permissions information is available at www.nature.com/reprints (http://www.nature.com/reprints) .
spellingShingle Article
Chen, Yong
Ikeda, Kenji
Yoneshiro, Takeshi
Scaramozza, Annarita
Tajima, Kazuki
Wang, Qiang
Kim, Kyeongkyu
Shinoda, Kosaku
Sponton, Carlos Henrique
Brown, Zachary
Brack, Andrew
Kajimura, Shingo
Thermal stress induces glycolytic beige fat formation via a myogenic state
title Thermal stress induces glycolytic beige fat formation via a myogenic state
title_full Thermal stress induces glycolytic beige fat formation via a myogenic state
title_fullStr Thermal stress induces glycolytic beige fat formation via a myogenic state
title_full_unstemmed Thermal stress induces glycolytic beige fat formation via a myogenic state
title_short Thermal stress induces glycolytic beige fat formation via a myogenic state
title_sort thermal stress induces glycolytic beige fat formation via a myogenic state
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6328316/
https://www.ncbi.nlm.nih.gov/pubmed/30568302
http://dx.doi.org/10.1038/s41586-018-0801-z
work_keys_str_mv AT chenyong thermalstressinducesglycolyticbeigefatformationviaamyogenicstate
AT ikedakenji thermalstressinducesglycolyticbeigefatformationviaamyogenicstate
AT yoneshirotakeshi thermalstressinducesglycolyticbeigefatformationviaamyogenicstate
AT scaramozzaannarita thermalstressinducesglycolyticbeigefatformationviaamyogenicstate
AT tajimakazuki thermalstressinducesglycolyticbeigefatformationviaamyogenicstate
AT wangqiang thermalstressinducesglycolyticbeigefatformationviaamyogenicstate
AT kimkyeongkyu thermalstressinducesglycolyticbeigefatformationviaamyogenicstate
AT shinodakosaku thermalstressinducesglycolyticbeigefatformationviaamyogenicstate
AT spontoncarloshenrique thermalstressinducesglycolyticbeigefatformationviaamyogenicstate
AT brownzachary thermalstressinducesglycolyticbeigefatformationviaamyogenicstate
AT brackandrew thermalstressinducesglycolyticbeigefatformationviaamyogenicstate
AT kajimurashingo thermalstressinducesglycolyticbeigefatformationviaamyogenicstate