Cargando…
Radiation dosimetry of [(68)Ga]PSMA-11 in low-risk prostate cancer patients
BACKGROUND: (68)Ga-labeled Glu-NH-CO-NH-Lys(Ahx)-HBED-CC ([(68)Ga]PSMA-11) has been increasingly used to image prostate cancer using positron emission tomography (PET)/computed tomography (CT) both during diagnosis and treatment planning. It has been shown to be of clinical value for patients both i...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6328430/ https://www.ncbi.nlm.nih.gov/pubmed/30631980 http://dx.doi.org/10.1186/s40658-018-0239-2 |
_version_ | 1783386638888468480 |
---|---|
author | Sandgren, Kristina Johansson, Lennart Axelsson, Jan Jonsson, Joakim Ögren, Mattias Ögren, Margareta Andersson, Martin Strandberg, Sara Nyholm, Tufve Riklund, Katrine Widmark, Anders |
author_facet | Sandgren, Kristina Johansson, Lennart Axelsson, Jan Jonsson, Joakim Ögren, Mattias Ögren, Margareta Andersson, Martin Strandberg, Sara Nyholm, Tufve Riklund, Katrine Widmark, Anders |
author_sort | Sandgren, Kristina |
collection | PubMed |
description | BACKGROUND: (68)Ga-labeled Glu-NH-CO-NH-Lys(Ahx)-HBED-CC ([(68)Ga]PSMA-11) has been increasingly used to image prostate cancer using positron emission tomography (PET)/computed tomography (CT) both during diagnosis and treatment planning. It has been shown to be of clinical value for patients both in the primary and secondary stages of prostate cancer. The aim of this study was to determine the effective dose and organ doses from injection of [(68)Ga]PSMA-11 in a cohort of low-risk prostate cancer patients. METHODS: Six low-risk prostate cancer patients were injected with 133–178 MBq [(68)Ga]PSMA-11 and examined with four PET/CT acquisitions from injection to 255 min post-injection. Urine was collected up to 4 h post-injection, and venous blood samples were drawn at 45 min, 85 min, 175 min, and 245 min post-injection. Kidneys, liver, lungs, spleen, salivary and lacrimal glands, and total body where delineated, and cumulated activities and absorbed organ doses calculated. The software IDAC-Dose 2.1 was used to calculate absorbed organ doses according to the International Commission on Radiological Protection (ICRP) publication 107 using specific absorbed fractions published in ICRP 133 and effective dose according to ICRP Publication 103. We also estimated the absorbed dose to the eye lenses using Monte Carlo methods. RESULTS: [(68)Ga]PSMA-11 was rapidly cleared from the blood and accumulated preferentially in the kidneys and the liver. The substance has a biological half-life in blood of 6.5 min (91%) and 4.4 h (9%). The effective dose was calculated to 0.022 mSv/MBq. The kidneys received approximately 40 mGy after an injection with 160 MBq [(68)Ga]PSMA-11 while the lacrimal glands obtained an absorbed dose of 0.12 mGy per administered MBq. Regarding the eye lenses, the absorbed dose was low (0.0051 mGy/MBq). CONCLUSION: The effective dose for [(68)Ga]PSMA-11 is 0.022 mSv/MBq, where the kidneys and lacrimal glands receiving the highest organ dose. |
format | Online Article Text |
id | pubmed-6328430 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-63284302019-01-25 Radiation dosimetry of [(68)Ga]PSMA-11 in low-risk prostate cancer patients Sandgren, Kristina Johansson, Lennart Axelsson, Jan Jonsson, Joakim Ögren, Mattias Ögren, Margareta Andersson, Martin Strandberg, Sara Nyholm, Tufve Riklund, Katrine Widmark, Anders EJNMMI Phys Original Research BACKGROUND: (68)Ga-labeled Glu-NH-CO-NH-Lys(Ahx)-HBED-CC ([(68)Ga]PSMA-11) has been increasingly used to image prostate cancer using positron emission tomography (PET)/computed tomography (CT) both during diagnosis and treatment planning. It has been shown to be of clinical value for patients both in the primary and secondary stages of prostate cancer. The aim of this study was to determine the effective dose and organ doses from injection of [(68)Ga]PSMA-11 in a cohort of low-risk prostate cancer patients. METHODS: Six low-risk prostate cancer patients were injected with 133–178 MBq [(68)Ga]PSMA-11 and examined with four PET/CT acquisitions from injection to 255 min post-injection. Urine was collected up to 4 h post-injection, and venous blood samples were drawn at 45 min, 85 min, 175 min, and 245 min post-injection. Kidneys, liver, lungs, spleen, salivary and lacrimal glands, and total body where delineated, and cumulated activities and absorbed organ doses calculated. The software IDAC-Dose 2.1 was used to calculate absorbed organ doses according to the International Commission on Radiological Protection (ICRP) publication 107 using specific absorbed fractions published in ICRP 133 and effective dose according to ICRP Publication 103. We also estimated the absorbed dose to the eye lenses using Monte Carlo methods. RESULTS: [(68)Ga]PSMA-11 was rapidly cleared from the blood and accumulated preferentially in the kidneys and the liver. The substance has a biological half-life in blood of 6.5 min (91%) and 4.4 h (9%). The effective dose was calculated to 0.022 mSv/MBq. The kidneys received approximately 40 mGy after an injection with 160 MBq [(68)Ga]PSMA-11 while the lacrimal glands obtained an absorbed dose of 0.12 mGy per administered MBq. Regarding the eye lenses, the absorbed dose was low (0.0051 mGy/MBq). CONCLUSION: The effective dose for [(68)Ga]PSMA-11 is 0.022 mSv/MBq, where the kidneys and lacrimal glands receiving the highest organ dose. Springer International Publishing 2019-01-11 /pmc/articles/PMC6328430/ /pubmed/30631980 http://dx.doi.org/10.1186/s40658-018-0239-2 Text en © The Author(s). 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Original Research Sandgren, Kristina Johansson, Lennart Axelsson, Jan Jonsson, Joakim Ögren, Mattias Ögren, Margareta Andersson, Martin Strandberg, Sara Nyholm, Tufve Riklund, Katrine Widmark, Anders Radiation dosimetry of [(68)Ga]PSMA-11 in low-risk prostate cancer patients |
title | Radiation dosimetry of [(68)Ga]PSMA-11 in low-risk prostate cancer patients |
title_full | Radiation dosimetry of [(68)Ga]PSMA-11 in low-risk prostate cancer patients |
title_fullStr | Radiation dosimetry of [(68)Ga]PSMA-11 in low-risk prostate cancer patients |
title_full_unstemmed | Radiation dosimetry of [(68)Ga]PSMA-11 in low-risk prostate cancer patients |
title_short | Radiation dosimetry of [(68)Ga]PSMA-11 in low-risk prostate cancer patients |
title_sort | radiation dosimetry of [(68)ga]psma-11 in low-risk prostate cancer patients |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6328430/ https://www.ncbi.nlm.nih.gov/pubmed/30631980 http://dx.doi.org/10.1186/s40658-018-0239-2 |
work_keys_str_mv | AT sandgrenkristina radiationdosimetryof68gapsma11inlowriskprostatecancerpatients AT johanssonlennart radiationdosimetryof68gapsma11inlowriskprostatecancerpatients AT axelssonjan radiationdosimetryof68gapsma11inlowriskprostatecancerpatients AT jonssonjoakim radiationdosimetryof68gapsma11inlowriskprostatecancerpatients AT ogrenmattias radiationdosimetryof68gapsma11inlowriskprostatecancerpatients AT ogrenmargareta radiationdosimetryof68gapsma11inlowriskprostatecancerpatients AT anderssonmartin radiationdosimetryof68gapsma11inlowriskprostatecancerpatients AT strandbergsara radiationdosimetryof68gapsma11inlowriskprostatecancerpatients AT nyholmtufve radiationdosimetryof68gapsma11inlowriskprostatecancerpatients AT riklundkatrine radiationdosimetryof68gapsma11inlowriskprostatecancerpatients AT widmarkanders radiationdosimetryof68gapsma11inlowriskprostatecancerpatients |