Cargando…

Sex and age modulate antennal chemosensory-related genes linked to the onset of host seeking in the yellow-fever mosquito, Aedes aegypti

The mosquito Aedes aegypti is the primary vector for the fastest growing infectious disease in the world, dengue fever. Disease transmission heavily relies on the ability of female mosquitoes to locate their human hosts. Additionally, males may be found in close proximity to humans, where they can f...

Descripción completa

Detalles Bibliográficos
Autores principales: Tallon, Anaïs Karine, Hill, Sharon Rose, Ignell, Rickard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6328577/
https://www.ncbi.nlm.nih.gov/pubmed/30631085
http://dx.doi.org/10.1038/s41598-018-36550-6
Descripción
Sumario:The mosquito Aedes aegypti is the primary vector for the fastest growing infectious disease in the world, dengue fever. Disease transmission heavily relies on the ability of female mosquitoes to locate their human hosts. Additionally, males may be found in close proximity to humans, where they can find mates. Host seeking behaviour of both sexes is dependent on adult sexual maturation. Identifying the molecular basis for the onset of host seeking may help to determine targets for future vector control. In this study, we investigate modulation of the host seeking behaviour and the transcript abundance of the main chemoreceptor families between sexes and across ages in newly-emerged mosquitoes. Attraction to human odour was assessed using a Y-tube olfactometer, demonstrating that both males and females display age-dependent regulation of host seeking. The largest increase in transcript abundance was identified for select chemosensory genes in the antennae of young adult Ae. aegypti mosquitoes and reflects the increase in attraction to human odour observed between 1 and 3 day(s) post-emergence in both males and females. Future functional characterisation of the identified differentially abundant genes may provide targets for the development of novel control strategies against vector borne diseases.