Cargando…

A new recombineering system for precise genome-editing in Shewanella oneidensis strain MR-1 using single-stranded oligonucleotides

Shewanella oneidensis MR-1 is an invaluable host for the discovery and engineering of pathways important for bioremediation of toxic and radioactive metals and understanding extracellular electron transfer. However, genetic manipulation is challenging due to the lack of genetic tools. Previously, th...

Descripción completa

Detalles Bibliográficos
Autores principales: Corts, Anna D., Thomason, Lynn C., Gill, Ryan T., Gralnick, Jeffrey A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6328582/
https://www.ncbi.nlm.nih.gov/pubmed/30631105
http://dx.doi.org/10.1038/s41598-018-37025-4
Descripción
Sumario:Shewanella oneidensis MR-1 is an invaluable host for the discovery and engineering of pathways important for bioremediation of toxic and radioactive metals and understanding extracellular electron transfer. However, genetic manipulation is challenging due to the lack of genetic tools. Previously, the only reliable method used for introducing DNA into Shewanella spp. at high efficiency was bacterial conjugation, enabling transposon mutagenesis and targeted knockouts using suicide vectors for gene disruptions. Here, we describe development of a robust and simple electroporation method in S. oneidensis that allows an efficiency of ~4.0 x 10(6) transformants/µg DNA. High transformation efficiency is maintained when cells are frozen for long term storage. In addition, we report a new prophage-mediated genome engineering (recombineering) system using a λ Red Beta homolog from Shewanella sp. W3-18-1. By targeting two different chromosomal alleles, we demonstrate its application for precise genome editing using single strand DNA oligonucleotides and show that an efficiency of ~5% recombinants among total cells can be obtained. This is the first effective and simple strategy for recombination with markerless mutations in S. oneidensis. Continued development of this recombinant technology will advance high-throughput and genome modification efforts to engineer and investigate S. oneidensis and other environmental bacteria.