Cargando…
Manganese Oxide Biomineralization Provides Protection against Nitrite Toxicity in a Cell-Density-Dependent Manner
Manganese biomineralization is a widespread process among bacteria and fungi. To date, there is no conclusive experimental evidence for how and if this process impacts microbial fitness in the environment. Here, we show how a model organism for manganese oxidation is growth inhibited by nitrite, and...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6328764/ https://www.ncbi.nlm.nih.gov/pubmed/30413475 http://dx.doi.org/10.1128/AEM.02129-18 |
_version_ | 1783386706989285376 |
---|---|
author | Zerfaß, Christian Christie-Oleza, Joseph A. Soyer, Orkun S. |
author_facet | Zerfaß, Christian Christie-Oleza, Joseph A. Soyer, Orkun S. |
author_sort | Zerfaß, Christian |
collection | PubMed |
description | Manganese biomineralization is a widespread process among bacteria and fungi. To date, there is no conclusive experimental evidence for how and if this process impacts microbial fitness in the environment. Here, we show how a model organism for manganese oxidation is growth inhibited by nitrite, and that this inhibition is mitigated in the presence of manganese. We show that such manganese-mediated mitigation of nitrite inhibition is dependent on the culture inoculum size, and that manganese oxide (MnO(X)) forms granular precipitates in the culture, rather than sheaths around individual cells. We provide evidence that MnO(X) protection involves both its ability to catalyze nitrite oxidation into (nontoxic) nitrate under physiological conditions and its potential role in influencing processes involving reactive oxygen species (ROS). Taken together, these results demonstrate improved microbial fitness through MnO(X) deposition in an ecological setting, i.e., mitigation of nitrite toxicity, and point to a key role of MnO(X) in handling stresses arising from ROS. IMPORTANCE We present here a direct fitness benefit (i.e., growth advantage) for manganese oxide biomineralization activity in Roseobacter sp. strain AzwK-3b, a model organism used to study this process. We find that strain AzwK-3b in a laboratory culture experiment is growth inhibited by nitrite in manganese-free cultures, while the inhibition is considerably relieved by manganese supplementation and manganese oxide (MnO(X)) formation. We show that biogenic MnO(X) interacts directly with nitrite and possibly with reactive oxygen species and find that its beneficial effects are established through formation of dispersed MnO(X) granules in a manner dependent on the population size. These experiments raise the possibility that manganese biomineralization could confer protection against nitrite toxicity to a population of cells. They open up new avenues of interrogating this process in other species and provide possible routes to their biotechnological applications, including in metal recovery, biomaterials production, and synthetic community engineering. |
format | Online Article Text |
id | pubmed-6328764 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-63287642019-02-01 Manganese Oxide Biomineralization Provides Protection against Nitrite Toxicity in a Cell-Density-Dependent Manner Zerfaß, Christian Christie-Oleza, Joseph A. Soyer, Orkun S. Appl Environ Microbiol Microbial Ecology Manganese biomineralization is a widespread process among bacteria and fungi. To date, there is no conclusive experimental evidence for how and if this process impacts microbial fitness in the environment. Here, we show how a model organism for manganese oxidation is growth inhibited by nitrite, and that this inhibition is mitigated in the presence of manganese. We show that such manganese-mediated mitigation of nitrite inhibition is dependent on the culture inoculum size, and that manganese oxide (MnO(X)) forms granular precipitates in the culture, rather than sheaths around individual cells. We provide evidence that MnO(X) protection involves both its ability to catalyze nitrite oxidation into (nontoxic) nitrate under physiological conditions and its potential role in influencing processes involving reactive oxygen species (ROS). Taken together, these results demonstrate improved microbial fitness through MnO(X) deposition in an ecological setting, i.e., mitigation of nitrite toxicity, and point to a key role of MnO(X) in handling stresses arising from ROS. IMPORTANCE We present here a direct fitness benefit (i.e., growth advantage) for manganese oxide biomineralization activity in Roseobacter sp. strain AzwK-3b, a model organism used to study this process. We find that strain AzwK-3b in a laboratory culture experiment is growth inhibited by nitrite in manganese-free cultures, while the inhibition is considerably relieved by manganese supplementation and manganese oxide (MnO(X)) formation. We show that biogenic MnO(X) interacts directly with nitrite and possibly with reactive oxygen species and find that its beneficial effects are established through formation of dispersed MnO(X) granules in a manner dependent on the population size. These experiments raise the possibility that manganese biomineralization could confer protection against nitrite toxicity to a population of cells. They open up new avenues of interrogating this process in other species and provide possible routes to their biotechnological applications, including in metal recovery, biomaterials production, and synthetic community engineering. American Society for Microbiology 2019-01-09 /pmc/articles/PMC6328764/ /pubmed/30413475 http://dx.doi.org/10.1128/AEM.02129-18 Text en Copyright © 2019 Zerfaß et al. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Microbial Ecology Zerfaß, Christian Christie-Oleza, Joseph A. Soyer, Orkun S. Manganese Oxide Biomineralization Provides Protection against Nitrite Toxicity in a Cell-Density-Dependent Manner |
title | Manganese Oxide Biomineralization Provides Protection against Nitrite Toxicity in a Cell-Density-Dependent Manner |
title_full | Manganese Oxide Biomineralization Provides Protection against Nitrite Toxicity in a Cell-Density-Dependent Manner |
title_fullStr | Manganese Oxide Biomineralization Provides Protection against Nitrite Toxicity in a Cell-Density-Dependent Manner |
title_full_unstemmed | Manganese Oxide Biomineralization Provides Protection against Nitrite Toxicity in a Cell-Density-Dependent Manner |
title_short | Manganese Oxide Biomineralization Provides Protection against Nitrite Toxicity in a Cell-Density-Dependent Manner |
title_sort | manganese oxide biomineralization provides protection against nitrite toxicity in a cell-density-dependent manner |
topic | Microbial Ecology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6328764/ https://www.ncbi.nlm.nih.gov/pubmed/30413475 http://dx.doi.org/10.1128/AEM.02129-18 |
work_keys_str_mv | AT zerfaßchristian manganeseoxidebiomineralizationprovidesprotectionagainstnitritetoxicityinacelldensitydependentmanner AT christieolezajosepha manganeseoxidebiomineralizationprovidesprotectionagainstnitritetoxicityinacelldensitydependentmanner AT soyerorkuns manganeseoxidebiomineralizationprovidesprotectionagainstnitritetoxicityinacelldensitydependentmanner |