Cargando…
xCT knockdown in human breast cancer cells delays onset of cancer-induced bone pain
Cancers in the bone produce a number of severe symptoms including pain that compromises patient functional status, quality of life, and survival. The source of this pain is multifaceted and includes factors secreted from tumor cells. Malignant cells release the neurotransmitter and cell-signaling mo...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6329019/ https://www.ncbi.nlm.nih.gov/pubmed/30799686 http://dx.doi.org/10.1177/1744806918822185 |
_version_ | 1783386750655135744 |
---|---|
author | Ungard, Robert G Linher-Melville, Katja Nashed, Mina G. Sharma, Manu Wen, Jianping Singh, Gurmit |
author_facet | Ungard, Robert G Linher-Melville, Katja Nashed, Mina G. Sharma, Manu Wen, Jianping Singh, Gurmit |
author_sort | Ungard, Robert G |
collection | PubMed |
description | Cancers in the bone produce a number of severe symptoms including pain that compromises patient functional status, quality of life, and survival. The source of this pain is multifaceted and includes factors secreted from tumor cells. Malignant cells release the neurotransmitter and cell-signaling molecule glutamate via the oxidative stress-related cystine/glutamate antiporter, system x(C)(−), which reciprocally imports cystine for synthesis of glutathione and the cystine/cysteine redox cycle. Pharmacological inhibition of system x(C)(−) has shown success in reducing and delaying the onset of cancer pain-related behavior in mouse models. This investigation describes the development of a stable siRNA-induced knockdown of the functional trans-membrane system x(C)(−) subunit xCT (SLC7A11) in the human breast cancer cell line MDA-MB-231. Clones were verified for xCT knockdown at the transcript, protein, and functional levels. RNAseq was performed on a representative clone to comprehensively examine the transcriptional cellular signature in response to xCT knockdown, identifying multiple differentially regulated factors relevant to cancer pain including nerve growth factor, interleukin-1, and colony-stimulating factor-1. Mice were inoculated intrafemorally and recordings of pain-related behaviors including weight bearing, mechanical withdrawal, and limb use were performed. Animals implanted with xCT knockdown cancer cells displayed a delay until the onset of nociceptive behaviors relative to control cells. These results add to the body of evidence suggesting that a reduction in glutamate release from cancers in bone by inhibition of the system x(C)(−) transporter may decrease the severe and intractable pain associated with bone metastases. |
format | Online Article Text |
id | pubmed-6329019 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | SAGE Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-63290192019-01-23 xCT knockdown in human breast cancer cells delays onset of cancer-induced bone pain Ungard, Robert G Linher-Melville, Katja Nashed, Mina G. Sharma, Manu Wen, Jianping Singh, Gurmit Mol Pain Research Article Cancers in the bone produce a number of severe symptoms including pain that compromises patient functional status, quality of life, and survival. The source of this pain is multifaceted and includes factors secreted from tumor cells. Malignant cells release the neurotransmitter and cell-signaling molecule glutamate via the oxidative stress-related cystine/glutamate antiporter, system x(C)(−), which reciprocally imports cystine for synthesis of glutathione and the cystine/cysteine redox cycle. Pharmacological inhibition of system x(C)(−) has shown success in reducing and delaying the onset of cancer pain-related behavior in mouse models. This investigation describes the development of a stable siRNA-induced knockdown of the functional trans-membrane system x(C)(−) subunit xCT (SLC7A11) in the human breast cancer cell line MDA-MB-231. Clones were verified for xCT knockdown at the transcript, protein, and functional levels. RNAseq was performed on a representative clone to comprehensively examine the transcriptional cellular signature in response to xCT knockdown, identifying multiple differentially regulated factors relevant to cancer pain including nerve growth factor, interleukin-1, and colony-stimulating factor-1. Mice were inoculated intrafemorally and recordings of pain-related behaviors including weight bearing, mechanical withdrawal, and limb use were performed. Animals implanted with xCT knockdown cancer cells displayed a delay until the onset of nociceptive behaviors relative to control cells. These results add to the body of evidence suggesting that a reduction in glutamate release from cancers in bone by inhibition of the system x(C)(−) transporter may decrease the severe and intractable pain associated with bone metastases. SAGE Publications 2019-01-08 /pmc/articles/PMC6329019/ /pubmed/30799686 http://dx.doi.org/10.1177/1744806918822185 Text en © The Author(s) 2019 http://creativecommons.org/licenses/by-nc/4.0/ Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
spellingShingle | Research Article Ungard, Robert G Linher-Melville, Katja Nashed, Mina G. Sharma, Manu Wen, Jianping Singh, Gurmit xCT knockdown in human breast cancer cells delays onset of cancer-induced bone pain |
title | xCT knockdown in human breast cancer cells delays onset of cancer-induced bone pain |
title_full | xCT knockdown in human breast cancer cells delays onset of cancer-induced bone pain |
title_fullStr | xCT knockdown in human breast cancer cells delays onset of cancer-induced bone pain |
title_full_unstemmed | xCT knockdown in human breast cancer cells delays onset of cancer-induced bone pain |
title_short | xCT knockdown in human breast cancer cells delays onset of cancer-induced bone pain |
title_sort | xct knockdown in human breast cancer cells delays onset of cancer-induced bone pain |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6329019/ https://www.ncbi.nlm.nih.gov/pubmed/30799686 http://dx.doi.org/10.1177/1744806918822185 |
work_keys_str_mv | AT ungardrobertg xctknockdowninhumanbreastcancercellsdelaysonsetofcancerinducedbonepain AT linhermelvillekatja xctknockdowninhumanbreastcancercellsdelaysonsetofcancerinducedbonepain AT nashedminag xctknockdowninhumanbreastcancercellsdelaysonsetofcancerinducedbonepain AT sharmamanu xctknockdowninhumanbreastcancercellsdelaysonsetofcancerinducedbonepain AT wenjianping xctknockdowninhumanbreastcancercellsdelaysonsetofcancerinducedbonepain AT singhgurmit xctknockdowninhumanbreastcancercellsdelaysonsetofcancerinducedbonepain |