Cargando…
How handling missing data may impact conclusions: A comparison of six different imputation methods for categorical questionnaire data
OBJECTIVES: Missing data is a recurrent issue in many fields of medical research, particularly in questionnaires. The aim of this article is to describe and compare six conceptually different multiple imputation methods, alongside the commonly used complete case analysis, and to explore whether the...
Autores principales: | Stavseth, Marianne Riksheim, Clausen, Thomas, Røislien, Jo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6329020/ https://www.ncbi.nlm.nih.gov/pubmed/30671242 http://dx.doi.org/10.1177/2050312118822912 |
Ejemplares similares
-
A nonparametric multiple imputation approach for missing categorical data
por: Zhou, Muhan, et al.
Publicado: (2017) -
Some Classes of Logarithmic-Type Imputation Techniques for Handling Missing Data
por: Pandey, Awadhesh K., et al.
Publicado: (2021) -
The Use of Multiple Imputation to Handle Missing Data in Secondary Datasets: Suggested Approaches when Missing Data Results from the Survey Structure
por: Jo, Soojung
Publicado: (2022) -
Should multiple imputation be the method of choice for handling missing data in randomized trials?
por: Sullivan, Thomas R, et al.
Publicado: (2016) -
Multiple imputation for handling missing outcome data when estimating the relative risk
por: Sullivan, Thomas R., et al.
Publicado: (2017)